
On the Systematic Development of
Domain-Specific Mashup Tools for End Users

Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel,
Fabio Casati and Maurizio Marchese

Department of Information Engineering and Computer Science
University of Trento, Via Sommarive 5, 38123, Trento, Italy

lastname@disi.unitn.it

Abstract. The recent emergence of mashup tools has refueled research
on end user development, i.e., on enabling end-users without program-
ming skills to compose their own applications. Yet, similar to what hap-
pened with analogous promises in web service composition and business
process management, research has mostly focused on technology and, as a
consequence, has failed its objective. In this paper, we propose a domain-
specific approach to mashups that is aware of the terminology, concepts,
rules, and conventions (the domain) the user is comfortable with. We
show what developing a domain-specific mashup tool means, which role
the mashup meta-model and the domain model play and how these can
be merged into a domain-specific mashup meta-model. We exemplify the
approach by implementing a mashup tool for a specific domain (research
evaluation) and describe the respective user study. The results of the
user study confirm that domain-specific mashup tools indeed lower the
entry barrier to mashup development.

1 Introduction

Mashups are typically simple web applications that, rather than being coded
from scratch, are developed by integrating and reusing available data, function-
alities, or pieces of user interfaces accessible over the Web. Mashup tools, i.e.,
online development and runtime environments for mashups, ambitiously aim
at enabling non-programmers to develop their own applications. The mashup
platforms developed so far either expose too much functionality and too many
technicalities, so that they are powerful and flexible but suitable only for pro-
grammers, or only allow compositions that are so simple to be of little use
for most practical applications. Yet, being amenable to non-programmers is in-
creasingly important, as the opportunity given by the wide range of applications
available online and the increased flexibility that is required in both businesses
and personal life management raise the need for situational applications.

We believe that the heart of the problem is that it is impractical to design
tools that are generic enough to cover a wide range of application domains, pow-
erful enough to enable the specification of non-trivial logic, and simple enough
to be actually accessible to non-programmers. At some point, we need to give



up something. In our view, this something is generality. Giving up generality in
practice means narrowing the focus of a design tool to a well-defined domain and
tailoring the tool’s development paradigm, models, language, and components
to the specific needs of that domain only.

As an example, in this paper we report on a mashup platform we specifically
developed for the domain of research evaluation, that is, for the assessment of the
performance of researchers, groups of researchers, departments, universities, and
similar. There are no commonly accepted criteria for performing such analysis in
general, and evaluation is highly subjective. Computing evaluation metrics that
go beyond the commonly adopted h-index is still a complex, manual task that
is not adequately supported by software instruments. In fact, computing an own
metric may require extracting, combining, and processing data from multiple
sources, implementing new algorithms, visually representing the results, and
similar. In addition, the people involved in research evaluation are not necessarily
IT experts and, hence, they may not be able to perform such IT-intensive tasks
without help. In fact, we may need to extract, combine, and process data from
multiple sources and render the information via visual components, a task that
has all the characteristics of a data mashup.

In this paper, we champion the notion of domain-specific mashup tools
and describe what they are composed of, how they can be developed, how they
can be extended for the specificity of any particular application context, and
how they can be used by non-programmers to develop complex mashup logics
within the boundaries of one domain. Specifically, (1) we provide a methodology
for the development of domain-specific mashup tools, defining the necessary
concepts and design artifacts; (2) we detail and exemplify all design artifacts
that are necessary to implement a domain-specific mashup tool; (3) we apply
the methodology in the context of an example mashup platform that aims to
support research evaluation, (4) we perform a user study in order to assess the
viability of the developed platform.

Next we outline the methodology we follow to implement the domain-specific
mashup tool. In Section 3 we briefly describe the actual implementation of our
prototype tool, and in Section 4 we report on our preliminary user study. In
Section 5, we review related works. We conclude the paper in Section 6.

2 Methodology

Our development of a specific mashup platform for research evaluation has al-
lowed us to conceptualize the necessary tasks and to structure them into the
following methodology steps:

1. Definition of a domain concept model (CM) to express domain data and
relationships. The domain concepts tell the mashup platform what kind of
data objects it must support. This is different from generic mashup platforms,
which provide support for generic data formats, not specific data objects.

2. Identification of a generic mashup meta-model (MM) that suits the compo-
sition needs of the domain. A variety of different mashup approaches, i.e.,



meta-models, have emerged over the last years and before focusing about
domain-specific features, it is important to identify a meta-model that ac-
commodates the domain processes to be mashed up.

3. Definition of a domain-specific mashup meta-model. Given a generic MM, the
next step is understanding how to inject the domain into it. We approach
this by specifying and developing:
(a) A domain process model (PM) that expresses classes of domain activities

and, possibly, ready processes. Domain activities and processes represent
the dynamic aspect of the domain.

(b) A domain syntax that provides each concept in the domain-specific
mashup meta-model (the union of MM and PM) with its own symbol.
Domain concepts and activities must be represented by visual metaphores
conveying their meaning to domain experts.

(c) A set of instances of domain-specific components. This is the step in
which the reusable domain-knowledge is encoded, in order to enable do-
main experts to mash it up into new applications.

4. Implementation of the domain-specific mashup tool (DMT) as a tool whose
expressive power is that of the domain-specific mashup meta-model and that
is able to host and integrate the domain-specific activities and processes.

In the next subsections, we expand each of these steps.

2.1 The Domain Concept Model

The domain concept model (CM) is obtained via interactions between an
IT expert and a domain expert. We represent it as ER diagram or XSD schema.
It describes the conceptual entities and the relationships among them, which,
together, constitute the domain knowledge. For example in the chosen domain
we have researchers, publications, conferences, metrics, etc. The core element
in the evaluation of scientific production and quality is the publication, which
is typically published in the context of a specific venue, e.g., a conference or
journal, and printed by a publisher. It is written by one or more researchers
belonging to an institution.

2.2 The Generic Mashup Meta-Model

We first define a generic mashup meta-model, which may fit a variety of dif-
ferent domains, then we show how to define the domain-specific mashup meta-
model, which will allow us to draw domain-specific mashup models. Specifically,
the generic mashup meta-model (MM) specifies a class of mashups and,
thereby, the expressive power, i.e., the concepts and composition paradigms, a
mashup platform must know in order to support the development of that class of
mashups. Thus the MM implicitly specifies the expressive power of the mashup
platform class. Identifying the right features of the mashups that fit a given do-
main is therefore crucial. For our domain, we start from a very simple MM, both
in terms of notation and execution semantics, which enables end-users to model
their own mashups. Indeed, it can be fully specified in one page:



– A mashup m = 〈C,P, V P, L〉, consists of a set of components C, a set of
data pipes P , a set of view ports V P that can host and render components
with own UI, and a layout L that specifies the graphical arrangement of
components.

– A component c = 〈IPT,OPT,CPT, type, desc〉, where c ∈ C, is like a task
that performs some data, application, or UI action. Components have ports
through which pipes are connected. Ports can be divided in input (IPT )
and output ports (OPT ), where input ports carry data into the component,
while output ports carry data generated by the component. Each component
must have at least either an input or an output port. Components with no
input ports are called information sources. Components with no output ports
are called information sinks. Components with both input and output ports
are called information processors.Configuration ports (CPT ) are used to
configure the components. They are typically used to configure filters or to
define the nature of a query on a data source. The configuration data can
be a constant (e.g., a parameter defined by the end user) or can arrive in a
pipe from another component. Conceptually, constant configurations are as
if they come from a component feeding a constant value. The type (type)
of the components denotes whether they are UI components, which display
data and can be rendered in the mashup, or application components, which
either fetch or process information. Components can also have a description
desc at an arbitrary level of formalization, whose purpose is to inform the
user about the data the components handle and produce.

– A pipe p ∈ P carries data (e.g., XML documents) between the ports of two
components, implementing a data flow logic. So, p ∈ IPT × (OPT ∪CPT ).

– A view port vp ∈ V P identifies a place holder, e.g., a DIV element or an
IFRAME, inside the HTML template that gives the mashup its graphical
identity. Typically, a template has multiple place holders.

– Finally, the layout L defines which component with own UI is to be rendered
in which view port of the template. Therefore l ∈ C × V P .

In the model above there are no variables and no data mappings. This is
at the heart of enabling end-user development as this is where much of the
complexity resides. It is unrealistic to ask end-users to perform data mapping
operations. Because there is a CM, each component is required to be able to
process any document that conforms to the model.

The operational semantics of the MM is as follows: execution of the
mashup is initiated by the user. All the components that are ready for exe-
cution are identified. A component is ready when all the input and configuration
ports are filled with data, that is, they have all necessary data to start process-
ing. All ready components are executed. They process the data in input ports,
consuming the respective data items form the input feed, and generate output
on their output ports. The execution proceeds by identifying ready components
and executing them, until there are no components to be executed left.

Developing mashups based on this meta-model, i.e., graphically composing
a mashup in a mashup tool, requires defining a syntax for the concepts in the



Name
[(Static conf. 
parameters)*]

Input port (multiple 
input ports are 
allowed)

Pipe

Output port (multiple 
output ports are allowed)

Shape (may vary)

Source name
[Query?]

Static source

Metric name
[Parameters*]

Metric

Filter name
[Filter condition]

Filter

Chart name

Chart

Source name
[Query?]

Parametric source

Aggregator name
[Aggregation function]

Aggregator

(a) Basic syntax for the concepts in the 
mashup meta-model that are to be exposed 
to the user. Data mappings are con!gured 
in a dedicated pop-up window.

(b) Domain-speci!c syntax for the concepts in the 
domain-speci!c meta-model extension

Port 
name

Configuration port for 
dynamic configuration 
parameters (multiple 
ports are allowed)

Fig. 1. Generic and domain-specific syntax for research evaluation

MM. In Figure 1(a) we map the above MM to a basic set of generic graphical
symbols and composition rules. In the next section, we show how to configure
domain-specific symbols.

2.3 The Domain-Specific Mashup Meta-Model

The mashup meta-model (MM) described in the previous section allows the
definition of a class of mashups that can fit into different domains. Thus, it is
not yet tailored to a specific domain. Now we want to push the domain into the
mashup meta-model. The next step is therefore understanding the dynamics of
the concepts in the model, that is, the typical classes of processes and activities
that are performed by domain experts. What we obtain from this is a domain-
specific mashup meta-model. Each domain-specific meta-model is a specialization
of the mashup meta-model along three dimensions: (i) domain-specific activities
and processes, (ii) domain-specific syntax, and (iii) domain instances.

The domain process model (PM) describes the classes of processes or
activities that the domain expert may want to mash up to implement composite,
domain-specific processes. Operatively, the PM is again derived by specializing
the generic meta-model based on interactions with domain experts. This time
the topic of the interaction is aimed at defining classes of components, their
interactions and notations. In the case of research evaluation, this led to the
identification of the following classes of activities, i.e., classes of components:
source extraction, metric computation, filtering, and aggregation activities.

A possible domain-specific syntax for the classes in the PM is shown in
Figure 1(b). Its semantic is the one described by the MM in Section 2.2.

A set of instances of domain activities must be implemented, providing
concrete mashup components. For example, the Microsoft Academic Publications
component is an instance of source extraction activity with a configuration port
(SetResearchers) that allows the setup of the researchers for which publications
are to be loaded from Microsoft Academic.



3 The ResEval Mash Tool

The ResEval Mash platform is composed of two parts, i.e., client side and server
side. The heart of the platform is the mashup execution engine on the client
side, which support client-side processing, that is, it controls data processing on
the server from the client. The engine is responsible for running a mashup com-
position, triggering the component’s actions and managing the communication
between client and server. The client side composition editor (shown in Figure 2)
provides the mashup canvas and a list of components from which users can drag
and drop components onto the canvas and connect them. The composition editor
implements the domain-specific mashup meta-model and exposes it through the
domain syntax. The platform also comes with a component registration interface
for developers to set up and configure new components for the platform. On the
server side, we have a set of RESTful web services, i.e., the components ser-
vices, authentication services, components and composition repository services,
and shared memory services. Components services allow the invocation of those
components whose business logic is implemented as a server-side web service.
These web services, together with the client-side components, implement the do-
main process model. Authentication services are used for user authentication and
authorization. Components and composition repository services enable CRUD
operations for components and compositions. Shared memory services provide
an interface for external web services (i.e., services which are not deployed on
our platform) to use the shared memory. The shared memory manager provides
and manages a space for each mashup execution instance on the server side. The
common data model (CDM) module implements the domain concept model (CM)
and supports the checking of data types in the system. CDM configures itself
using an XSD (i.e., an XML schema representing domain concept model). All
services are managed by a server side engine, which fulfills all requests coming
from the client side. A demo of ResEval Mash is described in [3] and a prototype
is available online at http://open.reseval.org/.

4 User Study and Evaluation

In order to evaluate our domain-specific mashup approach, we conducted a user
study with 10 users. Participants covering a broad range of domain and technical
expertise were invited to use ResEval Mash. At the beginning participants were
asked to fill in a questionnaire reporting their computing skills and to watch a
video tutorial followed by a set of tasks to complete.

Overall, the tool was deemed to be usable and the participants were com-
fortable using it. Independently of their level of computing knowledge, all par-
ticipants were able to accomplish the tasks with minimal or no help at all. The
only visible difference was a different level of confidence in task execution. IT
experts appeared to be more confident during the test. The results of our study
indicate real potential for the domain-specific mashup approach to allow people
with no computing skills to create their own applications. The definition of the



Fig. 2. Composition editor and example mashup output.

mappings among the components, which is a well-acknowledged problem known
form several user studies of EUD tools [6], did not occur at all in the our study.
This preliminary study suggests that ResEval Mash is a successful tool appealing
to both expert programmers and end-users with no computing skills.

5 Related Work

The idea of focusing on a particular domain and exploiting its specificities to
create more effective and simpler development environments is supported by a
large number of research works [5, 1]. Mainly these areas are related to Domain
Specific Modeling (DSM) and Domain Specific Language (DSL). In DSM, do-
main concepts, rules, and semantics are represented by one or more models,
which are then translated into executable code. Managing these models can be
a complex task that is typically suited only to programmers but that, however,
increases his/her productivity. In the DSL context, although we can find solu-
tions targeting end users (e.g., Excel macros) and medium skilled users (e.g.,
MatLab), most of the current DSLs target expert developers (e.g., Swashup [4]).
Also here the introduction of the “domain” raises the abstraction level, but the
typical textual nature of these languages makes them less intuitive and harder to
manage and less suitable for end users compared to visual approaches. Benefits
and limits of the DSM and DSL approaches are summarized in [1] and [5].

Web mashups [8] have emerged as an approach to provide easier ways to
connect together services and data sources available on the Web [2], together
with the claim to target non-programmers. Yahoo! Pipes (http://pipes.yahoo.
com), for instance, provides an intuitive visual editor that allows the design of
data processing logics. Support for UI integration is missing, and support for



service integration is still poor while it provides only generic programming fea-
tures (e.g., feed manipulation, looping) and typically require basic program-
ming knowledge. The CRUISe project [7] specifically focuses on composabil-
ity and context-aware presentation of UIs, but does not support the seam-
less integration of UI components with web services. The ServFace project
(http://www.servface.eu), instead, aims to support normal web users in com-
posing semantically annotated web services. The result is a simple, user-driven
web service orchestration tool, but UI integration and process logic definitions
are rather limited and again basic programming knowledge is still required.

6 Status and Lessons Learned

The work described in this paper resulted from actual needs within our university
and within the context of an EU project, which were not yet met by current
technology. It also resulted from the observation that in general composition
technologies failed to a large extent to strike the right balance between ease of
use and expressive power. They define seemingly useful abstractions and tools,
but in the end developers still prefer to use (textual) programming languages,
and, at the same time, domain experts are not able to understand and use them.
What we have pursued in our work is, in essence, to constrain the language to
the domain (but not in general in terms of expressive power) and to provide
a domain-specific notation so that it becomes easier to use and in particular
does not require users to deal with one of the most complex aspect of process
modeling (at least for end-users), that of data mappings.

References

1. R. France and B. Rumpe. Domain specific modeling. Software and Systems Model-
ing, 4:1–3, 2005.

2. B. Hartmann, S. Doorley, and S. Klemmer. Hacking, Mashing, Gluing: A Study of
Opportunistic Design and Development. Pervasive Computing, 7(3):46–54, 2006.

3. M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese. ResEval Mash:
A Mashup Tool for Advanced Research Evaluation. In Proceedings of WWW 2012,
pages 361–364.

4. E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai. A domain-specific language
for web apis and services mashups. In ICSOC, pages 13–26, 2007.

5. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37(4):316–344, 2005.

6. A. Namoun, T. Nestler, and A. De Angeli. Service Composition for Non Pro-
grammers: Prospects, Problems, and Design Recommendations. In Proceedings of
ECOWS, pages 123–130. IEEE, 2010.

7. S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner. Cruise: Composition of rich
user interface services. In Proceedings of ICWE’09, pages 473–476. 2009.

8. J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding Mashup Develop-
ment. IEEE Internet Computing, 12:44–52, 2008.


