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Fine‑grained population mapping 
from coarse census counts 
and open geodata
Nando Metzger 1*, John E. Vargas‑Muñoz 2, Rodrigo C. Daudt 1, Benjamin Kellenberger 2,3, 
Thao Ton‑That Whelan 4, Ferda Ofli 5, Muhammad Imran 5, Konrad Schindler 1 & Devis Tuia 2

Fine-grained population maps are needed in several domains, like urban planning, environmental 
monitoring, public health, and humanitarian operations. Unfortunately, in many countries only 
aggregate census counts over large spatial units are collected, moreover, these are not always 
up-to-date. We present Pomelo, a deep learning model that employs coarse census counts and open 
geodata to estimate fine-grained population maps with 100 m ground sampling distance. Moreover, 
the model can also estimate population numbers when no census counts at all are available, by 
generalizing across countries. In a series of experiments for several countries in sub-Saharan Africa, 
the maps produced with Pomelo are in good agreement with the most detailed available reference 
counts: disaggregation of coarse census counts reaches R2 values of 85–89%; unconstrained prediction 
in the absence of any counts reaches 48–69%.

High-resolution population maps are crucial for many planning tasks, from urban planning1 to preparing 
humanitarian actions2 and effective disaster response3. Given the rapid population growth in many regions of 
the world4 and the increasing rate at which populations shift in response to environmental and social changes, 
it is important to maintain accurate, up-to-date maps. Unfortunately, census data are often only available at very 
coarse spatial resolution (e.g., one aggregate number for a district with hundreds or even thousands of km2) and 
therefore not suitable as a basis for local planning: whether for sustainable land use and infrastructure manage-
ment or for targeted disaster relief, planners need to know in more detail where the people are. The problem 
is especially prevalent in developing countries in the global south, where humanitarian actions are more often 
needed yet census data availability and quality are limited.

Remote sensing products and other openly available geographical datasets like OpenStreetMap (OSM) can 
serve as auxiliary, high-resolution evidence to create fine-grained population density maps5. Yet, the design of 
effective population density models6 that combine such data sources with low-resolution census counts remains 
a challenge. Generally speaking, two different approaches have been employed for population mapping7: bottom-
up and top-down. Bottom-up methods7,8 start from local surveys of population density, collected at a number of 
sample locations, and attempt to generalize from detailed but sparse samples to the unobserved regions to cover 
larger areas. Researchers have proposed different ways to locally measure population density, such as counting 
the (average) number of people per rooftop area7,8 or, if more resources are available for the local survey, specific 
average densities for different types of residential zones (urban-, rural-, and non-residential)7,9. A main drawback 
of bottom-up methods is that local surveys will necessarily remain extremely sparse and can hardly provide 
enough data points to scale population mapping up to the country level. On the contrary, top-down approaches6,10 
rely on census data, which ensures complete coverage at the expense of much lower spatial resolution, in some 
cases down to a single head count per large district. The task then becomes to disaggregate that data to a much 
finer resolution, often a regular grid.

Top-down approaches6,11 commonly use dasymetric disaggregation to redistribute the known, spatially coarse 
population counts for census areas on the order of many km2 across smaller spatial units12—for instance square 
blocks of size 100 × 100 m—with the help of auxiliary variables that covary with population density. Examples 
of such covariates for population disaggregation are the presence of buildings13, building counts10, building 
volumes14, and cumulative road lengths15. Dobson et al.16 propose a weighted combination of several covariates, 
such as land cover and proximity to roads, to compute what portion of the population to assign to each target 
unit. Stevens et al.6 resort to machine learning and train a random forest model to predict population density 
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from a set of covariates like building maps and night light images. A limitation of the method proposed by 
Stevens et al.6 is that administrative regions with known census counts are used as training units, which means 
that the input features (covariates) must be aggregated across all pixels in such a region; whereas at prediction 
(inference) time, density values are predicted for each individual pixel, respectively feature vector. Consequently, 
the method’s efficacy is reduced in countries with coarse census units, as aggregation over large spatial regions 
induces distribution shifts between the training and test data.

Recent work has employed deep learning, in particular convolutional neural networks (CNNs17) for popula-
tion estimation, in an attempt to better account for spatial context. Gervasoni et al.18 used a CNN to map data 
extracted from OSM to disaggregation weights per pixel with 200 × 200 m ground sampling distance (GSD). This 
allows one to super-resolve census counts to a finer granularity; however, since the predicted weights are relative, 
the method cannot be used to predict population numbers for regions without census data. Jacobs et al.19 trained 
a CNN to predict fine-grained population maps from very high resolution (VHR) optical satellite imagery and 
census data. This is viable for individual cities, but difficult to scale up to larger geographic contexts, due to the 
limited availability and high cost of VHR images. Both CNN-based methods18,19 depend on fairly fine-grained 
initial counts with census units of few km2, e.g., urban census blocks in France, respectively the USA. For com-
parison, the administrative units for which census data are available in much of Africa have sizes on the order 
of several hundred to several thousand km2, which precludes the use of such methods.

Here, we propose a methodology to estimate fine-grained population maps from such very coarse census data 
by fusing them with covariate maps of higher resolution. As inputs, we use publicly available products derived 
from remote sensing images and other open data sources, e.g., building footprint maps, night light images, and 
OSM road layers. They are used to train a model that predicts population on a spatial grid with 100 × 100 m GSD. 
Our method, which we call Pomelo (short for “population mapping by estimation of local occupancy rates”), 
is inspired by work on guided super-resolution of low-resolution images20–22. In an experimental evaluation with 
data from three different countries in Sub-Saharan Africa (Tanzania, Zambia, Mozambique) Pomelo delivers 
significantly more accurate population maps compared to several baseline methods, including the pioneering 
work of Stevens et al.6 with which the widely used WorldPop maps23 are created. Moreover, Pomelo can not 
only disaggregate existing census data, but can also predict population maps in the absence of census counts. 
Consequently, it can be deployed to regions or countries where no suitable census information is available—of 
course these estimates, inevitably, have higher uncertainties, as the total population is no longer constrained by 
a known aggregate number. In summary, Pomelo provides knowledge about where people are at the hectometer 
scale, even if census data are not available.

Results
We compare Pomelo with other state-of-the-art baseline models using three different evaluation strategies, and 
three performance metrics (see “Methods” section), namely R2 , mean absolute error (MAE), and mean absolute 
percentage error (MAPE):

Coarse supervision.  In this strategy, used by several works in the literature6,24,25, the census data at the 
finest available level are reserved exclusively for performance evaluation. First, the available census data are arti-
ficially coarsened by aggregating them to the next-higher (“coarse”) level of administrative regions (e.g., counts 
at district level are aggregated into a single count per province). Then, the coarse level regions are divided into 
five random folds, of which three serve as training set, one as validation set for hyper-parameter tuning and 
checkpointing the model on the best MAPE, and one as test set to measure the model’s predictive skill. Finally, 
the model is trained to predict gridded population numbers at 100 m GSD, such that they add up to the coarse 
level counts. To measure performance, the gridded population estimates are aggregated to obtain population 
numbers for each fine level administrative region in the test set and are then compared to the corresponding 
census data.

This scheme corresponds to an application scenario where fine-level census data are not available: all model 
fitting and mapping is only based on the coarse level. The fine level counts are employed exclusively to evaluate 
prediction performance.

The entire training and evaluation procedure is run as a fivefold cross-validation, rotating the validation and 
test folds. Figure 1 depicts the coarse census data used for training, the fine level census data used for evalua-
tion, and the fine-grained population maps obtained by our model, for the surroundings of Zanzibar, Tanzania.

Fine supervision.  In the second evaluation scheme, census data at the finest available level are used for 
supervision. The data are not coarsened, rather the original fine-level data are divided into five random folds. 
These folds are split along the same coarse-level administrative boundaries as above, such that the training, 
validation and test portions during cross-validation are identical to the coarse supervision scenario. The model 
is trained to predict gridded population numbers at 100 m GSD, such that they add up to the fine-level counts. 
Just like above, the gridded population estimates are aggregated to obtain population numbers for each fine-level 
administrative region in the held-out test fold (e.g., Fig. 1b), which are then compared to the corresponding 
census data to compute performance metrics.

This scheme corresponds to the actual, realistic population mapping task with the available census granularity. 
The finest available resolution is used to learn the best possible model, geographically separating training and test-
ing regions to ensure an unbiased evaluation. Note that the combined test set, after holding out each fold once for 
testing, is the same for coarse supervision and fine supervision, such that the error metrics are directly comparable.
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Transfer task.  Besides census disaggregation, Pomelo can also be used to estimate population density for a 
given country in the absence of census numbers. To evaluate the performance on such more challenging task, we 
use data from seven different countries. One of the countries is held out as test set, and the data from the remain-
ing six countries are randomly split into 80% for training and 20% for validation (i.e., hyper-parameter tuning). 
Then, the model is trained to predict gridded population numbers at 100 m GSD, using the fine-level strategy. 
Finally, the model is deployed for the held-out country, and evaluated in the same way as above.

For each test country we run five models with different random parameter initialization and train/validation 
splits and report the average and standard deviation of each performance metric. We compare our proposed 
method with other four baseline methods, described in the “Methods” section: Building count disaggregation, 
the random forest model used by WorldPop6, a Markov Random Field based method for population disaggrega-
tion, and a Convolutional Neural Network model.

For evaluation, we use data from Tanzania and Zambia with the three aforementioned evaluation strategies. 
Mozambique is used only in the transfer task evaluation. The data available for that country is not suitable for the 
other two evaluation schemes: in Mozambique there are only 413 fine-level regions grouped into 156 coarse-level 
regions. The low aggregation factor of only 2.6× causes the performance metrics to saturate at a similar value of 
83% R2 for all methods, while giving little indication about the correctness of the pixel-level maps.

Results—Coarse supervision.  Table 1 presents the performance metrics for the coarse supervision strat-
egy in Tanzania and Zambia. The first two rows show learning-free methods that are only capable of pure disag-
gregation, i.e., they cannot estimate population numbers for regions without known (aggregate) census counts. 
The MRF formulation brings a marked improvement compared to the simple disaggregation scheme based only 
on building counts. For the three learning-based methods, we first predict population numbers without using 
the target regions’ census counts, then normalize those counts to relative fractions and use those as weights for 
dasymetric disaggregation. Pomelo achieves the best performance in all three metrics, with the closest competi-
tor being the MRF. An interesting observation is that the region-based RF method6, when trained with such 

Figure 1.   Overview of the different level of population data. Shown location: Zanzibar City, Tanzania. The map 
visualizations were created in QGIS 3.1426.

Table 1.   Performance with coarse supervision for Tanzania and Zambia.

Evaluation set Method R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

Tanzania

Building disaggregation 65.2 3700 23.1

MRF 78.6 3300 21.7

RF per region6 49.0 ± 3.0 4380 ± 50 26.9 ± 0.2

CNN 69.5 ± 2.0 4200 ± 100 28.8 ± 0.5

Pomelo 85.7 ± 0.9 3100 ± 40 21.6 ± 0.2

Zambia

Building disaggregation 82.1 4300 53.9

MRF 87.0 3900 51.3

RF per region6 76.4 ± 0.0 4750 ± 90 60.9 ± 1.2

CNN 83.9 ± 0.7 4250 ± 40 51.4 ± 1.7

Pomelo 87.9 ± 0.1 3730 ± 30 50.4 ± 0.4
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coarse census data, does not even reach the performance of simple building count disaggregation. The evaluation 
results for Zambia largely mirror those for Tanzania, where the MRF is the closest to Pomelo in terms of R2 and 
MAE. Next follows the CNN, which handles Zambia much better than Tanzania.

Results—Fine supervision.  Table  2 shows quantitative performance when the models are trained and 
evaluated on the finer census level. Note that we cannot use the learning-free building disaggregation and MRF 
baselines with this evaluation strategy, since they are only designed for disaggregation of regions with known 
overall population numbers (which makes no sense in the fine supervision setting, as the target quantity would 
have to be known in advance). For Tanzania, we again observe the best performance with Pomelo, although the 
advantage is smaller than in the case of coarse supervision (Table 1). The performance of the region-based RF 
improves a lot when trained with fine supervision, showing that the coarse supervision does not offer enough 
supervision signal for training at the region level. The second section of Table  2 shows results for Zambia. 
Pomelo maintains a slight edge in terms of R2 and absolute error. It does not fare as well in terms of MAPE, 
which is due to large relative errors in few, sparsely populated regions (that nonetheless translate to small errors 
of the absolute population count): just by removing Zambia’s smallest census region with only 28 inhabitants 
from the evaluation, the MAPE of Pomelo drops to 45%.

Figure 2 shows scatter plots (census counts versus our predicted counts) for the fine-level administrative 
regions of both Tanzania and Zambia. In both cases, the data are, with few exceptions, close to the (red, dashed) 
diagonal that corresponds to the ideal result, where predictions and ground truth coincide.

Results ‑ Transfer task.  We also evaluate Pomelo in a scenario where no census data are available for the 
target country. Here, the models must instead be trained on other countries and should be able to generalize to 
a potentially different unknown geographical context. From the seven countries considered (Tanzania, Zambia, 
Mozambique, Rwanda, Uganda, Democratic Republic of Congo, and Nigeria), we select six for training and 
validation and report the evaluation metrics on the respective held out country (Tanzania, Zambia, and Mozam-
bique) in Table 3.

The first rows of each section in the table (“average occupancy rate”) show the results of a naïve baseline that 
computes the average occupancy rate in the six training countries and multiplies it with the building count map 
of the target country to obtain the population map. One can see that this simple approach does not perform well 

Table 2.   Performance with fine supervision for Tanzania and Zambia.

Evaluation set Method R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

Tanzania

RF per region6 79.1 ± 2.6 3320 ± 70 22.1 ± 0.3

CNN 80.8 ± 2.1 3290 ± 80 21.7 ± 0.4

Pomelo 87.6 ± 0.2 2890 ± 20 20.4 ± 0.3

Zambia

RF per region6 87.6 ± 0.0 3740 ± 40 46.5 ± 0.4

CNN 88.2 ± 0.4 3680 ± 50 44.9 ± 0.4

Pomelo 88.7 ± 0.3 3650 ± 20 48.0 ± 0.6

Figure 2.   Comparison between the estimates predicted by Pomelo and the respective ground truth census in 
the fine level training task.
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in any of the countries, barely reaching a positive R2 score only in Zambia. The region-based RF model does not 
generalize well either, to the point that the R2 metric becomes negative and the MAPE exceeds 100% for Zambia 
and Mozambique. The performance of the CNN is still rather good across all evaluation settings, despite the 
more challenging scenario. Pomelo exhibits even better overall performance, with the exception of a slightly 
higher MAE in Mozambique.

As a proxy for a “general” model that is valid for an entire geographic area, we also create a training set with 
data from all seven countries (including the respective target country), and apply the resulting model to the 
(unseen) test set of the target country, using fivefold cross-validation to cover the whole country. For comparison, 
we also run models trained specifically for each country, but without dasymetric rescaling, to keep the com-
parison fair. That scenario would normally not be relevant in practice, since the training implies that aggregate 
counts are available except in the special situation that no current census counts are available and a previously 
trained model is reused. However, by removing the influence of the postprocessing it shows the ability of the 
country-specific model to predict unconstrained, absolute numbers. As expected, the country-specific models 
perform better than the one learned only with data from four other countries, but not as well as a model trained 
on all seven countries, presumably due to the larger amount and variability of training samples.

Visual results.  The finest census level available for validation are administrative regions with areas of a few 
km2 to several hundred km2, and ranging from very low to very high population densities. To visually examine 
the predicted population maps at 100 m resolution, we select regions with known low/high densities and resort 
to OSM for verification. Figure 3 presents example population estimates, shown as heat maps overlaid on OSM 
for regions around the city of Dar-es-Salaam in Tanzania. Each example covers an area of 400×400  m, cor-
responding to 16 cells in our gridded map. Figure 3a shows an example of a very low population estimate in a 
rural area. The estimates in low-density residential areas (Fig. 3b) are somewhat higher and more variable, due 
to varying numbers of buildings. In high-density residential areas (top part of Fig. 3c), the estimates are even 
higher. For non-residential areas with mostly commercial buildings (bottom part of Fig. 3c), the model predicts 
a relatively low and uniform density. These variations can occur over a small spatial distance: as an example, 
Fig. 3c show a sudden drop in population density between immediately adjacent city areas.

Figure 4 depicts the predicted building occupancy rates as heat maps for two neighborhoods in the city of Dar-
es-Salaam, that are located close to each other but feature very different occupancy rates. The densely populated 
area of the Mtoni region in Fig. 4a has an estimated (mean) building occupancy rate of 4.2, whereas the area in 
the Kijichi region in Fig. 4b has a much lower estimated occupancy rate of 2.8.

Figure 5 visualizes population numbers and building occupancy rates per administrative region (“ward”) in 
the surroundings of Dar-es-Salaam. One can see that wards have rather heterogeneous sizes and populations. 
Figure 5a depicts our model’s population estimates, obtained by aggregating the grid cells within each ward. 
Figure 5b depicts the reference values from the national census. Figure 5c are our model’s estimated building 
occupancy rates, computed by dividing the estimated population by the number of buildings—or, equivalently, 
by averaging the predicted densities, with weights proportional to the building counts in their corresponding 
grid cells. Figure 5d are the true occupancy rates according to the census (i.e., the population count divided by 
the number of buildings). The relative error of the per-ward population estimates, as a percentage of the true 
numbers, is shown in Fig. 5e. In general, the predictions are in good agreement with the actual numbers. We 
do observe a trend that Pomelo overestimates the populations in built-up low-density regions, while it tends to 

Table 3.   Performance on the transfer task for all countries.

Evaluation set Method R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

Tanzania

Average occupancy rate − 52.9 13,200 98.0

RF per region6 22.1 ± 10.1 8000 ± 700 66.5 ± 6.2

CNN 34.6 ± 6.2 6800 ± 300 49.6 ± 3.0

Pomelo 68.1 ± 0.9 5200 ± 200 35.6 ± 1.0

Pomelo—7 countries 81.7 ± 0.6 3170 ± 20 21.7 ± 0.6

Pomelo—Tanzania only 82.0 ± 1.5 3800 ± 70 26.4 ± 0.2

Zambia

Average occupancy rate 14.4 12,300 150.2

RF per region6 − 193.4 ± 361.3 19,000 ± 8000 271.9 ± 139.0

CNN 59.0 ± 1.6 6600 ± 300 82.7 ± 5.6

Pomelo 68.7 ± 3.1 6100 ± 200 75.6 ± 1.6

Pomelo—7 countries 85.4 ± 0.5 3810 ± 10 49.6 ± 0.2

Pomelo—Zambia only 74.0 ± 1.4 4820 ± 70 47.6 ± 0.1

Mozambique

Average occupancy rate − 88.1 82,500 153.0

RF per region6 − 49.5 ± 21.1 59,000 ± 3000 102.0 ± 3.6

CNN 43.6 ± 5.2 35,200 ± 1300 63.0 ± 1.9

Pomelo 48.3 ± 3.2 36,900 ± 900 47.5 ± 0.6

Pomelo—7 countries 83.0 ± 0.5 16,800 ± 200 34.1 ± 0.2

Pomelo—Mozambique only 61.0 ± 3.0 30,600 ± 900 45.0 ± 1.0



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20085  | https://doi.org/10.1038/s41598-022-24495-w

www.nature.com/scientificreports/

underestimate the extremely high occupancies in the centers of large cities. Finally, Fig. 6 shows a visual compari-
son of recent population maps of Zanzibar City, at 100 m resolution; Including the High Resolution Population 
Density Maps (HRPDM) project29, Random Forest disaggregation per census region following6 (but trained with 
the same data as our method), and Pomelo. It is apparent that Pomelo recovers the population distribution in 
more detail (i.e., with a higher effective resolution), whereas the HRPDM maps as well as the region-wise disag-
gregation result appear overly smooth and do not recover high-frequency variations of the population density.

Discussion
We evaluate the performance of our method using three different scenario: coarse supervision, fine supervision, 
transfer task. In the past few years, the first method has been the de facto standard for top-down population 
estimation6,25 and connects our evaluations to related literature. However, we argue that the fine supervision 

Figure 3.   Visual examples of population estimates on a 100 m grid, represented as heat maps on OSM 
background27. The color scale for the heat maps is shown in the top right in absolute population counts.

Figure 4.   Estimated average building occupancy rate, depicted as heat map on OSM background, for the Mtoni 
and Kijichi regions of Dar-es-Salaam. Note the significantly different occupancy rates in the marked areas.
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scenario is actually more representative of the procedure one would use in practice: On the one hand, it would 
seem unnatural to not use the finest available spatial units if the goal is to produce the best possible population 
maps from a given census dataset. On the other hand, in the coarse supervision setting one predicts population 
maps at a level that is already known from the census. The coarse scenario seems to have arisen largely from the 
desire to evaluate pure disaggregation methods, which requires access to ground truth counts at two different 
levels of the spatial hierarchy.

It is worth noting that the region-level RF method of Stevens et al.6 does not work well if the census is only 
available for spatially coarse units, which is a rather frequent situation in developing countries. We see several 
possible reasons for this: first, there simply are fewer regions at coarser hierarchy levels and one may be left with 
too few training examples to learn a good model. Second, performing feature aggregation leads to a domain shift 
between coarse-level training data and fine-level test data—in particular at the pixel level.

We found it advantageous to first estimate the spatial distribution of the building occupancy rate, and then 
compute population numbers by multiplying the occupancy rate and the building count at a given location. This 
is in contrast to methods that directly estimate absolute population numbers6 or relative population fractions 
(which are the weights for dasymetric disaggregation18). The finding that factoring into building counts and 
occupancy reduces the estimation errors lends support to two assumptions implicit in our approach: First, the 

Figure 5.   Population and building occupancy rate per ward around Dar-es-Salaam, Tanzania: (a) estimated 
population counts, (b) true population counts, (c) estimated building occupancy rate, (d) true occupancy rate, 
(e) signed relative errors of population estimates. The map visualizations were created in QGIS 3.1426.

Figure 6.   Visual comparison of the Sentinel-2 imagery28 High Resolution Population Density Maps (HRPDM)29 
per-region RF disaggregation6 and Pomelo. Shown location: Zanzibar City, Tanzania. The Sentinel-2 mosaic 
was created with Google Earth Engine30 and visualized in QGIS26.
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available maps of building counts (respectively, building footprints) are apparently rather accurate, so that using 
them directly rather than as one of many “soft” covariates reduces the estimation error. Second, the occupancy 
rate appears to have lower spatial variability than the population density, making it easier to estimate from the 
same covariates.

The important role of country-scale building counts (respectively, building footprint maps) also merits some 
discussion. For our work we obtain them from free sources, namely the Open Buildings dataset31 and the Grid 
Maps of Building Patterns32. Both these datasets are created with computer vision-based building detectors on the 
basis of high-resolution satellite imagery (GSD < 1m). Although the datasets are of high quality, such large-scale 
maps inevitably contain errors and data gaps, especially in rural areas33. We have tried to maximize completeness 
by fusing the two building datasets, but note that missing buildings (and to a lesser degree perhaps also spurious 
buildings) may cause errors in our population maps, mainly in scarcely populated areas.

Although the mentioned building footprint datasets are available for free, the underlying high-resolution 
images used to produce them are not. The processing of high-resolution data at country scale also requires con-
siderable computational resources. Our method thus critically depends on data that are oftentimes primarily 
produced for a different purpose or for philanthropic reasons, and over whose production we have no control. 
If at some point in the future no up-to-date building dataset is at hand, one could try to resort to autoregressive 
settlement growth models34,35. Alternatively, one may keep the building detection implicit and also feed high-
resolution images to the population estimator. Such approaches have been developed7,36, but since they rely on 
(commercial) high-resolution satellite imagery they can hardly be scaled up to entire countries, except by entities 
who could equally supply the building counts. Crowdsourced data (e.g., OSM roads) have their own challenges 
due to incompleteness and temporal inaccuracies. However, in several regions of developing countries, com-
mercial products and official data are not available, making crowdsourced data the only source of information 
with sufficient coverage in those regions37.

In addition to the building counts, Pomelo is driven by several other geospatial data layers that are publicly 
available and correlate with population. We have analyzed feature importance with the permutation method38, 
which essentially measures the performance drop caused by randomly shuffling a single input layer, so as to 
render that covariate uninformative. Exemplary feature importance scores for Tanzania (fine supervision) are 
shown in Fig. 7. Although the ordering of the covariates fluctuates depending on the chosen performance 
measure, we noted one commonality, namely the nightlight and settlement layers are among the most predictive 
inputs. Moreover, also features with low scores appear to carry some relevant information, as explicit feature 
selection based on the importance scores tends to harm model performance. For more details please refer to 
the “Methods” section.

Apart from the covariates used in the present work, there are others that could potentially be useful, and that 
one could obtain from open geospatial data sources. For instance, online land use maps as available in OSM could 
help to identify non-residential buildings such as schools or shopping centers, and building height estimates 
from Esch et al.39, once publicly available, could help to predict more precise building occupancy rates. Further-
more, data extracted from social media could possibly also support population mapping in certain areas. For 
example, the Facebook Marketing API40 allows one to access (anonymized and aggregated) information about 
the platform’s users at a certain location41,42, such as the number of active users, the type of internet connection 

Figure 7.   Feature importance analysis for the fine supervision setting in Tanzania.
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used, etc. It is quite possible that such information is to some degree predictive of population density. However, 
social media and OSM data are typically incomplete and biased, which is a challenge and would require compu-
tational methods that can exploit the important features without relying on their completeness. Finally, it would 
be important to develop techniques to handle the case where covariates are missing for certain regions or time 
periods in a given country.

Methods
Data.  To validate our proposed methodology, we use covariates that are related to population, and that can 
be derived from remote sensing imagery, open geo-spatial data (e.g., OSM) or governmental sources. For the 
present study we rely on data that have been preprocessed by the WorldPop23 project. We collect the covari-
ates listed in Table 4, with a resolution of 100 × 100 m. A selection of variables is visualized in the left part of 
Fig. 8. Moreover, we obtain census data for the countries of Tanzania (ward-level, n = 3654 ) Zambia (ward-level, 
n = 1421 ) and Mozambique (postos administrativos-level, n = 413 ) to evaluate the performance of our proposed 
Pomelo method.

We also aggregate the census counts to the second-finest administrative level for the countries of Tanzania 
(district-level), Zambia (constituency-level), and Mozambique (district-level), using administrative boundaries 
from the Humanitarian Data Exchange48, to simulate scenarios where the census counts are coarser. We will 
later refer to these aggregated data as coarse census counts. Finally, to assess the generalization performance of 
Pomelo across countries, we collect the same source data for four further countries, Uganda (UGA), Rwanda 
(RWA), Nigeria (NGA), and Democratic Republic of Congo (COD), to be used as additional training data. The 
dataset is summarized in Table 5.

Proposed method: population mapping by estimating local occupancy rates.  Our goal is to 
produce population maps with a finer resolution than the underlying census counts. In machine learning terms 
we are thus faced with an instance of weakly supervised learning49: we do not have access to ground truth values 
for the individual grid cells, rather we only have one target value (the census count for a region) as supervision 
signal for a whole set of outputs (all grid cells within the region).

Table 4.   Summary of the used covariates.

Type Description

Buildings

1 Building counts from Google Open Buildings31

2 Building counts from Gridded Maps of Building Patterns32

3 Mean building areas from Google Open Buildings31

4 Mean building areas from Gridded Maps of Building Patterns32

Accessibility 5 Travel time to city with more than 50k inhabitants23

Nightlight
6 Cloud-free DMSP nightlight composite43

7 Cloud-free VIIRS nightlight composite43

Settlement
8 Distance to built-up area from Global Human Settlement layer (GHSL)44

9 Distance to built-up area from Built-Settlement Growth Model (BSGM)23

Topography
10 Elevation model from the Shuttle Radar Topography Mission (SRTM)45

11 Slope from the Shuttle Radar Topography Mission (SRTM)45

Water

12 Distance to Waterbody from ESA CCI Water46

13 Distance to Waterway from OpenStreetMap27

14 Distance to Coastline23

Land cover 15 Distance to Nature Reserves from World Database on Protected Areas (WDPA)47

Roads
16 Distance to Road from OpenStreetMap27

17 Distance to Road Intersection derived from OpenStreetMap27

Table 5.   Overview of census data used and data extent in # of pixels. Each pixel covers a region of 100 × 
100 m. The Category Others refers to the additional countries of Uganda, Rwanda, Nigeria and the Democratic 
Republic of Congo.

# census regions # pixels Avg. fine census region

Fine Coarse Total Built-up (%) Area (km2) Population

Tanzania 3654 170 111M 7.5 333 15,449

Zambia 1421 150 90M 3.4 633 13,035

Mozambique 413 156 96M 5.6 2324 75,095

Others 2779 295 412M 5.5 9975 139,171
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This cumulative sum per region is the supervision signal used by our model. More specifically, we employ a 
neural network, c.f. Fig. 8, that maps the covariates to population density estimates and that can be trained with 
lower-resolution ground truth: rather than per-pixel supervision, which is not available, the training procedure 
compares aggregated estimates per administrative region to the available region-level census data.

We denote the covariates at grid location li as X(li) , the population estimate at the same location as p̂(li) , and cj 
as the true census data for region Aj . We observe that the correlation between the number of buildings at a given 
location and its population turns out to be so strong that even dasymetric disaggregation based only on building 
counts produces reasonable (albeit less precise) population density maps, as shown in the “Results” section. We 
exploit this strong correlation for the design of the neural network’s architecture as follows: To obtain even more 
accurate estimates, we predict a spatially varying building occupancy rate  fθ (X(li)) , rather than the population 
count directly. The population estimate p̂(li) is then computed from it as

where b(li) is the number of buildings at location li (obtained from existing building products31,32) and θ are the 
parameters of the neural network. We use a neural network composed of a sequence of convolutional layers with 
kernel sizes 1× 1 , i.e., its architecture is equivalent to a per-pixel multi-layer perceptron (MLP). Empirically, we 
observe that adding more spatial context (e.g., via convolutional layers with kernel sizes > 1) does not significantly 
improve the model’s prediction performance (see results in Table 7). At first this may seem surprising, but at 
the low GSD of our maps most covariates are smooth. Consequently, the disadvantages of a large receptive field 
outweigh the potential benefits: feature values of neighboring pixels tend to be very similar and hence do not add 
much information. Moreover, the spatial averaging effect still causes some loss of high-frequency detail (a similar 
effect has been observed by other authors, e.g., de Lutio et al.22). Also, the increased number of parameters is 
more prone to overfitting. A practical benefit of using 1 × 1 kernels is that, in the absence of spatial interactions, 
there is no spatial diffusion of the input information. All computations can be restricted to the small fraction 
of grid cells with at least one building. This makes the network memory-efficient, an important feature when 
processing large countries with coarse census regions, as GPU memory is often the computational bottleneck 
for modern neural networks.

The fundamental insight behind Pomelo (and any other top-down disaggregation scheme) is that, given 
enough data, the weak supervision is sufficient: the sum over many grid cells is only a weak constraint per census 
region, but it accumulates over different regions because similar covariate features at different locations must 
yield similar population densities; whereas the input covariates have (at least) the target resolution and inject 
the missing high-frequency information. Formally, measuring the loss L over all grid cells li in each region Aj 
gives rise to the following optimization problem:

Empirically, the loss function that achieves the best results is the L1 distance between the log-transformed 
predictions and targets:

(1)p̂(li) = fθ
(

X(li)
)

· b(li),

(2)

θ̂ = argmin
θ

∑

j

L
(

ĉj , cj
)

,

with ĉj =
∑

i∈Aj

p̂(li).

(3)L
(

ĉj , cj
)

= | log ĉj − log cj | .

Figure 8.   Overview of the proposed method: We use a neural network to create a mapping between covariates 
(blue circles) and population density. The direct output of the neural network are building occupancy rates 
(green circle) which we multiply with the building count map to obtain population counts. We receive the 
supervision signal for training by aggregating the population maps to the respective census regions through 
summation, and comparing our estimates with the available census data.
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If census data are available at inference time, we can leverage the associated, additional constraints to perform 
disaggregation (dasymetric mapping) as a form of post-processing. In other words, we treat the final outputs 
of our model p̂(li) not as absolute quantities but as relative proportions. By linearly rescaling the predictions 
within a census region j such that they add up to 1, we obtain weights that indicate what fraction of the total 
census count cj should be assigned to each location li . By multiplying those weights with the cj , we then obtain 
the disaggregated population estimates p̂adj , adjusted to exactly match the coarse census counts:

As long as the census data are correct, that adjustment can be expected to improve the population density 
map compared to the raw, absolute estimates. If no census counts are available at all, we just keep the raw esti-
mates p̂(li).

Model setup.  Our neural network is composed of four convolutional layers with kernel sizes 1× 1 or, equiv-
alently, of a four-layer MLP that is applied per pixel. The first three layers each have 128 filters, and the last layer 
has one filter to output a scalar density value per location. We use dropout50 (with probability 0.4), and rectified 
linear unit (ReLU) layers after each convolutional layer. We apply a softplus function to the output of the last 
convolutional layer, constraining the occupancy rates to positive numbers. The model is trained using the Adam 
optimizer51 with a base learning rate of 0.0001. The weight decay parameter for regularization is optimized via 
grid-search on the validation set. To mitigate the low number of training samples, we propose a data augmen-
tation strategy specific to our task, namely we create artificial “pseudo-regions” from two real administrative 
regions, by merging their pixels and summing their population counts.

The importance of the main components of our model design is ablated in Table  6. It shows quantitative 
results obtained with different model setups for the scenario with coarse supervision in Tanzania. We start from 
a baseline that has the same model architecture, but 

1.	 employs the standard L1 distance between predictions and target values as loss function (no log L1 loss);
2.	 directly predicts population counts per grid cell, and
3.	 is trained only with the actual administrative regions (no region-based augmentation).

We then gradually add the components used in our proposed setting. First, we find that computing the loss 
with log-transformed outputs significantly improves over the standard L1 loss. Second, predicting the building 
occupancy rate instead of the population and transforming it to a population count in postprocessing also clearly 
reduces the error, especially the R2 metric. Third, data augmentation by synthetically merging census regions 
also has a positive effect, confirming the beneficial effect of problem-specific augmentation when training data 
is scarce. Finally, combining all three measures, as in our proposed model, yields greatly improved predictive 
skill, reaching ≈ 25% lower mean absolute error, respectively > 14% points higher R2.

Table 7 show the effect of larger kernel widths on Pomelo’s performance for Tanzania, in both the coarse and 
fine supervision settings. It can be seen that larger kernel sizes are consistently detrimental, it appears that the 
they increase model complexity beyond the level that can be learned with the available supervision. On the one 
hand the bigger kernels inflate the number of weights that must be trained (9× more, respectively 25× more). 

(4)p̂adj(li) =
p̂(li)

∑

k∈Aj
p̂(lk)

· cj .

Table 6.   Effect of modeling choices (Tanzania data, coarse supervision).

Method LogL1 Occ. Aug. R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

Baseline 71.4 ± 0.3 4130 ± 80 27.5 ± 0.9

+ Log L1 loss � 73.2 ± 0.3 3580 ± 30 23.0 ± 0.2

+ Occupancy rate � 81.4 ± 1.2 3820 ± 180 26.8 ± 1.2

+ Augmentation � 73.0 ± 1.2 3820 ± 30 25.0 ± 0.4

Pomelo � � � 85.8 ± 0.7 3100 ± 30 21.7 ± 0.3

Table 7.   Performance with varying kernel sizes on the dataset of Tanzania.

Training setting Kernel size #params (k) R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

Coarse

1× 1 (ours) 34 85.7 ± 0.9 3100 ± 40 21.6 ± 0.2

3× 3 313 83.5 ± 1.3 3700 ± 110 26.6 ± 0.7

5× 5 870 80.9 ± 1.0 3900 ± 100 28.4 ± 0.8

Fine

1× 1 (ours) 34 87.6 ± 0.2 2890 ± 20 20.4 ± 0.3

3× 3 313 86.0 ± 2.1 3010 ± 100 20.9 ± 0.5

5× 5 870 86.8 ± 1.0 3030 ± 50 21.5 ± 0.4
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These additional degrees of freedom increase the risk of overfitting and make learning harder—particularly in 
our weakly supervised setting, which becomes apparent with coarse supervision from only 170 regions. While 
on the other hand the covariate maps in general exhibit a high degree of spatial smoothness and do thus do not 
contain high-frequency context that larger kernels could capture.

We also empirically study the choice of input covariates. To that end, we only keep the five input layers with 
the highest individual importance according to the permutation method38 and discard the remaining features. 
The results with this reduced input set for Tanzania (fine supervision setting) are reported in Table 8. Empiri-
cally, explicit variable selection noticeably harms performance. Apparently features with lower importance scores 
still carry valuable information that complements the most important features. In this context, note that in the 
proposed scheme the number of input layers is not critical: with the Pomelo architecture, an additional covari-
ate only introduces 128 learnable parameters. The computational savings achievable with feature selection are 
negligible.

Methods used for numerical comparisons.  We compare Pomelo with four other methods:

Building count disaggregation Dasymetric disaggregation using only the available building counts per pixel 
as weights.
Random Forest (RF) at region level Our own re-implementation of the random forest model used by 
WorldPop6. The model is fed the same covariates (features) as the Pomelo network. The training units for 
that scheme are not grid cells but administrative regions, with features aggregated over all pixels within a 
region. The map visualizations were created in QGIS 3.1426.
Markov random field (MRF) Here, disaggregation is based directly on the assumption that locations with 
similar features have similar population densities. To enforce such prior knowledge explicitly, we resort to 
an MRF52 that compares pixel-wise predictions to each other and to their encompassing region. This involves 
finding the combination of population values that minimizes the following (negative log-likelihood) energy 
function:

where N is the number of grid cells and Qi the set of nearest neighbors to cell li in the (normalized) feature 
space. The first term encourages locations with similar features (i.e., the k nearest neighbors to pixel i in feature 
space) to have similar population counts; the second term pushes the aggregate count over an administrative 
region towards the region’s total census. Parameter � determines the balance between the two constraints; 
for all the experiments we set � = 1 . We create the (approximate) nearest-neighbor graph with the fast ANN 
method53, initialize the population counts with the building count disaggregation described above, and find an 
optimal configuration by minimizing the energy function with the Iterated Conditional Modes algorithm52, 
using update steps of ±1% . Empirically, we found that using too many covariates as features harms the 
performance of the MRF model, likely due to the higher dimension of the associated feature space. The best 
performance, reported in the “Results” section, are obtained with only three covariates: building count, aver-
age building size, and night lights.
Convolutional neural network (CNN) It has been proposed to estimate population counts with a CNN with 
spatial context19, trained with the same form of aggregated supervision as Pomelo. We instead advocate for 
a shared per-pixel architecture. Hence, we further include a baseline that has the same network architecture 
as Pomelo, with two exceptions: the kernel size is set to 3 × 3 for all convolutional layers, and the network 
is trained to directly output population as suggested by19 (rather than densities, as in our system). We point 
out that, while our CNN baseline is inspired by that study, the two are not directly comparable: Jacobs et al. 
target local population mapping in urban areas and base their estimates on high-resolution Planet imagery 
with 3 m GSD, and on city block-level population and housing counts from the US census. Consequently, they 
can also afford to train a much larger (U-net54) model.

Evaluation metrics.  For all three evaluation strategies, shown in the “Results” section, the estimated maps 
are evaluated by aggregating the per-pixel counts back to a list of nc population numbers Oc  at finest available 
census level and comparing them to the actual census counts c in terms of R2 , mean absolute error (MAE), and 
mean absolute percentage error (MAPE):

(5)p̂MRF = argmin p∈RN

N
∑

i

∑

k∈Qi

|pi − pk| + �

∑

j

|cj −
∑

k∈Aj

pk| ,

Table 8.   Performance on Tanzania data with reduced covariate set (fine supervision setting).

Method R
2 ↑ [%] MAE ↓ MAPE ↓ [%]

All features (ours) 87.6 ± 0.2 2890 ± 20 20.4 ± 0.3

Top 5 features 85.7 ± 0.4 2980 ± 10 20.7 ± 0.0
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Data availability
All data used in this study is publicly available. The population maps can be accessed via https://​doi.​org/​10.​6084/​
m9.​figsh​are.​21444​282.​v1, while the code is available in the following repository: https://​github.​com/​jvarg​asmu/​
popul​ation_​estim​ation.
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