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A B S T R A C T   

Geolocation information is important for humanitarian organizations to gain situational aware
ness and deliver timely aid during disasters. Towards addressing the problem of recognizing lo
cations, i.e., Location Mention Recognition (LMR), within social media posts during disasters, past 
studies mainly focused on proposing techniques that assume the availability of abundant training 
data at the disaster onset. In this work, we adopt the more realistic assumption that no (i.e., zero- 
shot setting) or as little as a few hundred examples (i.e., few-shot setting) from the just-occurred 
event is available for training. Specifically, we examine the effect of training a BERT-based 
LMR model on past events using different settings, datasets, languages, and geo-proximity. 
Extensive empirical analysis provides several insights for building an effective LMR model dur
ing disasters, including (i) Twitter crisis-related and location-specific data from geographically- 
nearby disaster events is more useful than all other combinations of training datasets in the 
zero-shot monolingual setting, (ii) using as few as 263–356 training tweets from the target lan
guage (i.e., few-shot setting) remarkably boosts the performance in the cross- and multilingual 
settings, and (iii) labeling about 500 target event’s tweets leads to an acceptable LMR perfor
mance, higher than F1 of 0.7, in the monolingual settings. Finally, we conduct an extensive error 
analysis and highlight issues related to the quality of the available datasets and weaknesses of the 
current model.   

1. Introduction 

Twitter has shown to be an effective medium for gaining situational awareness and performing an urgent need assessment of the 
affected population during sudden-onset disasters [2,3]. The microblogging platform often breaks news and is thus considered a 

☆ This manuscript describes a major extension to an earlier version published at COLING′20 [1]. Improvements over the previous work include fine-tuning the 
BERT-based LMR model for all setups over different hyper-parameters. This makes the results more reliable and the conclusions more solid. Additionally, we study the 
cross- and multilingual training data setup under the condition of absent target training data. For that, we conducted experiments on Italian and Turkish languages. 
This way we investigate various dimensions for data transfer learning including the type of documents (e.g., web documents, tweets), the type of entities (e.g., LOC, 
ORG, etc.), the type of the disaster events (e.g., earthquake, flood, etc.), the geographical proximity of disaster events (e.g., within same country or continent), and the 
language (e.g., English, Italian, etc.). We further provide a deeper analysis of the results. We also study the effect on the model’s performance when incrementally 
labeling tweets from the target disaster event. This allows us to recommend the minimum number of tweets to label at the onset of disaster events to obtain an 
acceptable performing LMR model. Moreover, we conduct a failure analysis to understand the causes behind the model failure and to gain some insights on how to 
improve it further for future work. 
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low-latency source for timely access to information. As disaster events happen and develop, many people rush to Twitter to report their 
updates, incidents around them, and more importantly, request assistance from government authorities and fellow citizens. These 
requests often contain location information, usually in the unstructured form [4]. This information can be invaluable for response 
authorities to be aware of the situation on the ground, and to effectively reach the affected people on the spot. Due to the limitations of 
using the traditional (e.g., hot-lines) and non-traditional (e.g., physical remote sensing) technologies, response authorities are 
increasingly incorporating social sensing in their operations [5]. 

For effective situational awareness via social sensing, responders depend on the availability and quality of geolocation information 
on Twitter [6]. First, they need to determine whether the reported incidents or requests are within their jurisdiction areas; otherwise, 
they redirect to the responsible authority [7]. Second, responders use geolocation information to locate events and create crisis maps 
for timely decision-making and response deployment and evaluation.1 These include (1) spatial situational awareness maps, (2) 
hotspots maps of causalities, damages, and resources scarcity, (3) eyewitnesses and resources maps (e.g., food, shelters, etc.), (4) 
population mobility maps (e.g., evacuation behavior), or (5) disaster impact maps to plan for recovery, among others. 

Response agencies’ requirements to use Twitter for situational awareness or mapping tasks (as listed above) vary. In a participatory 
design workshop, police officers, firefighters, and paramedics, among other responders, provided example tweets that they look for on 
Twitter during disasters. Most examples contain fine-grained location mentions (LMs), e.g., streets, buildings, etc. [8]. On the other 
hand, a survey for emergency managers and disaster responders indicated their need for coarse-grained locations that they use for 
immediate relief activities and impact assessments [9–11]. 

Furthermore, the effectiveness of geolocation information has been shown during many real-world disasters. For instance, during 
the earthquake in Port-au-Prince in Haiti in 2010, the emergency personnel exploited Ushahidi platform2 to map geotagged tweets.3 

Similarly, in the aftermath of the Christchurch Earthquake in New Zealand, geo-tagged e-mails and messages were used to map the 
earthquake incidents and consequences. Furthermore, the Red Cross in the United States used around 10k photos and videos of 
damages by the Sandy Hurricane in 2012. This data was shared over Instagram by eyewitnesses with geo-tagged information.4 

However, a major obstacle toward using raw Twitter data for situational awareness is that only approximately 1–4% of tweets are 
tagged for places or GPS coordinates [12]. What is more worrisome is that Twitter announced on June 18, 2019 that it would removed 
the geotagging feature in tweets as people tend to use imprecise geolocation for their shared content.5 Despite that, eyewitnesses of 
incidents still mention locations within the text of tweets, which indeed emphasizes the need for automatic location extraction and 
inference tools. While extensive research has been conducted on processing tweets for crisis management [13–21], a limited focus has 
been given to the Location Mention Prediction (LMP) problem [22]. 

The LMP systems consist of two main components; a Location Mention Recognition (LMR) model that extracts toponyms, i.e., places 
or location names from tweets, and a Location Mention Disambiguation (LMD) model that resolves the potential LMs to defined 
geographical points from a geo-positioning database (i.e., gazetteer). In Fig. 1, we illustrate our perception of the role of the LMR 
module in the disaster response pipeline. The upstream modules (filtering blocks) aim to keep informative posts of high quality for LMP 
and discard all other content (e.g., non-relevant, spam, fake or rumors, bot-generated, useless content). The arrangement of upstream 
modules can be changed according to the responders’ needs. The downstream processing aims to geographically analyze and visualize 
the Twitter information. This processing can run manually (e.g., by stakeholders) or automatically (e.g., using machine learning 
models). 

In this work, we only focus on the LMR task. Two main factors that influence the robustness of an LMR system are: (i) the learning 
model, and (ii) the dataset used to train the learning model. As for the learning model, there are two well-established approaches. The 
first is adopting existing general-purpose Named Entity Recognition (NER) taggers. NER is the general task of LMR by definition, which 
aims to extract the entity mentions in a given text. However, the general-purpose NER systems do not effectively extract toponyms 
from Twitter messages because tweets often contain informal language, misspellings, grammar mistakes, shortened words, and slangs 
[23]. Moreover, entities mentioned in tweets may have inconsistent capitalization, which is one of the main features standard NER 
systems rely on [22]. The second common approach is employing gazetteers to maintain highly precise location mentions recognizers. 
The gazetteer-based models are restricted to the geographical coverage of their databases. Additionally, the noisy nature of the Twitter 
stream contradicts the nature of gazetteers causing the so-called mismatch problem. More recently, several deep learning approaches 
were proposed. However, the general practice for these solutions is to train the models using data from the target disaster event, which 
is usually scarce or hard to obtain. 

To address the aforementioned challenges, we employ the BERT model as it achieved state-of-the-art results in many NLP tasks 
[24]. Moreover, deep learning models eliminate the cost of hand-crafting features, which allows us to overcome the limitations of 
gazetteer-based and traditional learning models that highly depend on feature engineering. While most of the existing studies focus on 
learning algorithms and assume sufficient training data is available, we explore how the choice of a training dataset influences the 
performance of an LMR system in the domain of humanitarian crises, where the cost and time of acquiring training data should be 
minimized. This exploration, thus, contributes to the effectiveness and the efficiency of deploying the LMR models in emergencies. We 

1 www.hsdl.org/?abstract&did=805223. 
2 www.ushahidi.com/. 
3 www.hsdl.org/?abstract&did=805223. 
4 www.techradar.com/news/internet/dealing-with-disaster-how-social-media-is-helping-save-the-world-1203809 The Federal Emergency Management Agency 

(FEMA) and the City of New Orleans had also employed the eyewitness information to plan their response efforts during Hurricane Isaac 2012. The reported data 
contains flooding locations, road closures, and utility outages. 

5 twitter.com/TwitterSupport/status/1141039841993355264. 
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run our experiments in two settings related to training data augmentation strategies: (i) zero-shot setting, where there is no available 
training data at all, and (ii) few-shot setting, where limited training examples, in order of hundreds, are available. In the zero-shot 
setting, we investigate the effect of multiple factors on the LMR model during training including the data domain, entity types, 
disaster domain, geo-proximity, and language. In the few-shot setting, we investigate the performance of multilingual models when 
training with limited labeled data from the target language. We also seek to determine the performance gains of our best LMR model 
when incrementally adding labeled data from the target event in a monolingual setting. This enables us to learn the minimal cost of 
acquiring data from the just-occurred disasters. 

Considering all these diverse settings, we formulate our research questions as follows:  

• RQ1: How effective is the LMR system when trained on the web-based general-purpose NER datasets with all types of entities 
including location (LOC), organization (ORG), person (PER), and miscellaneous (MISC), versus Twitter general-purpose datasets?  

• RQ2: How effective are the general-purpose web-based datasets compared with general-purpose Twitter datasets when using only 
LOC entities (i.e., without ORG and PER)?  

• RQ3: Does training on crisis-related Twitter datasets improve the performance of the LMR system compared to the general-purpose 
Twitter datasets?  

• RQ4: Does training on combined data from different types of crisis events yield better performance than training on data from the 
same type of events?  

• RQ5: Does the geospatial proximity of training events to the target event affect the performance?  
• RQ6: Can a model trained on one language be used to recognize location mentions from another language?  
• RQ7: How many target event tweets are required to train a reasonably performing (e.g., F1 > = 0.70) LMR model? 

The research on the LMR task is currently lacking answers to these questions. In this work, we perform extensive experiments in an 
effort to empirically provide answers to them. We fix our learning model to a state-of-the-art model (i.e., BERT-based LMR) and use a 
variety of datasets, i.e., web-based general-purpose, Twitter general-purpose, and Twitter crisis-specific. Our results suggest that the 
general-purpose datasets are not the best for LMR in crisis tweets. Moreover, the types of entities (e.g., person or organization) used to 
train a model make a difference. Specifically, training using only location entities gives better performance than using all entity types. 
Furthermore, while Twitter datasets are preferred over general-purpose datasets, we observe that Twitter crisis-related datasets help 
achieve better performance. More interestingly, we found training on past disasters of the same type as the target disaster generally 
improves the performance. While labeled data from the target event yield the best performance, we note that using labeled data from 
disasters that happened nearby is helpful when the target labeled data is not available. Additionally, training on little labeled data, 
around 263–356 tweets, from the target language significantly boosts the performance when combined with all available multilingual 
data. Finally, we suggest training on all available data from all domains to minimize the labeling cost at the onset of disaster events. 
Labeling around 500 tweets would generally be sufficient to obtain an acceptable LMR model. 

The contributions of this paper are as follows:  

• We tackle the bottleneck of lack of annotated data, drawbacks of gazetteer-based solutions, and the expense of hand-crafted 
features by exploiting a BERT-based LMR model.  

• We explore different data transfer setups with a variety of aspects including data domain, types of entities, disaster domain, geo- 
proximity, and language. We further suggest the best option for each aspect at the onset of disaster events.  

• We study the cost of incrementally acquiring labeled data at the onset of disaster events for training reasonabley-performing LMR 
model.  

• We conduct failure analysis on the BERT-based model to gain insights for the future development of LMR models. 

For reproducibility, we make the NER datasets (in BILOU format), the steps to acquire the licensed Twitter crisis-related datasets, 
the best performing models, and the steps to run the BERT-based LMR model publicly available.6 

The rest of the article is organized as follows. We summarize related work in Section 2. We present an overview of the LMR problem 
and define it formally in Section 3. We discuss the experimental setup in Section 4. We thoroughly analyze the results, answer the 
research questions, and discuss the lessons we learned in Section 5. To gain insightful lessons for future development of LMR models, 
we conduct failure analysis in Section 6. We discuss the implications and limitation of our study in section 7. We finally conclude and 

Fig. 1. Positioning the LMR task in the disaster response pipeline.  

6 https://github.com/rsuwaileh/TLLMR4CM.git. 
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list some future directions in Section 8. 

2. Related work 

In this section, we discuss different uses of Twitter information for crisis management (Section 2.1). We then focus on research 
studies that perform geolocation information extraction from Twitter (Section 2.2). Lastly, we describe efforts toward automating the 
location extraction process from tweets during disaster events (Section 2.3). 

2.1. Information extraction from Twitter for crisis management 

Recently, Hiltz et al. [25] conducted a survey to prioritize the tasks (features in systems) developed by technologists, based on the 
guidance of experts from the crisis management domain in different countries. The study showed that Twitter is the most preferred 
social media platform by experts during emergencies, alongside Facebook. Invaluable efforts have been made by technologists to 
enable utilizing social media for preparedness, relief, and recovery of emergencies [13]. The proposed tasks involve but are not limited 
to, detecting disasters and incidents [14,15,26], filtering relevant tweets [17–19,27], summarizing them [16], identifying situational 
reports [20,28–30], identifying actionable information [3,7,21,31], and geolocation and other types of information extraction [22, 
32–35]. 

Nevertheless, the current solutions are rarely deployed by relief organizations [36,37] due to several reasons. For instance, the 
unreliability of information, the inefficiency of solutions in disaster scenarios, the lack of readiness for customization for the different 
needs of different stakeholders, to name a few. Fortunately, there are some recent efforts to bridge the gap between the technologists 
and responders from the relief organizations by understanding their needs and the utility of existing solutions [7,8,21,25,31,38]. 

For example, Hughes & Shah [38] proposed a monitoring and analytical application that helps Public Information Officers (PIO) to 
document and report information about emergencies from social media. The development of the application was in light of observation 
of the PIO activities. Furthermore, Vieweg et al. [28] was the first to define a list of types of situational updates grounded on a manual 
exploration of disaster datasets. The list of types has evolved to include finer classes and actionable classes, such as calls for actions 
(evacuation, volunteers, donations) [31], availability and needs for different resources (generally or for a specific location), and ac
tivities of relief organizations [21]. Further efforts have been put to establish the definition of actionability and define the criteria for 
ranking actionable tweets [39]. Zade et al. [7] have then moved the attention beyond extracting decision-support reports to aiming at 
supporting mission-specific responders. Through surveys and interviews with response authorities, they explored the varying defi
nitions of actionability for different responders. Similarly, Kropczynski et al. [8] investigated the characteristics of actionable tweets by 
interviewing administrators, telecommunicators, and first responders. 

2.2. Geolocation extraction for crisis management 

According to Hiltz et al. [25]; grouping social media content on a map by their geographic locations is the most demanded feature by 
responders. Another important feature was to automatically geo-tag posts. In addition to providing a spatial view of the situation during 
emergencies, these features facilitate efficient management of relief activities by making actions or routing them to the responsible 
authorities [7,8]. Geolocation information allows responders to locate resources (e.g., food, shelters, etc.) and their status, activities (e. 
g., evacuation zones), casualties, and damages [8–11]. Thereby, since the early emergence of social media, relief organizations have 
utilized geo-tagged content in their activities. A good case in point is the exploitation of mashup technologies to map the disaster event 
and improve situational awareness. These applications follow a crowd-source-based model for collecting updates (e.g., comments, 
photos, or videos on incidents, etc.). There are different mashup platforms that can be used to map crisis data (real-time mapping of 
situational and actionable data), such as Ushahidi,7 Geofeedia,8 ESRI-ArcGIS,9 Google Crisis Response,10 and Factal.11 

Many such services were developed and deployed during past disasters, including Port-au-Prince Earthquake in Haiti in 2020,12 

Typhoon Haiyan in the Philippines (Visov) in 2013, and Chennai Floods in India in 2016.13 Furthermore, Fairfax County in Virginia, 
US, explored the usefulness of Geofeedia that provides location-based analytical modules to monitor and aggregate various social 
media data including Twitter, Instagram, and YouTube. The county also took part in releasing the “National Capital Region News and 
Information” portal that uses a web-based system to exploit social media and geotagging capabilities for crisis communication and 
management.14 

Additionally, Roy et al. [40] created dynamic disruption maps from Twitter data to visualize types of distributions and their status. 
For that, they employed the NLTK NER model [41] to extract location mentions from tweets’ text. Hong & Frias-Martinez [42]; on the 
other hand, used the geolocation information extracted from Twitter data to model the patterns of evacuation flows at different 
coarse-grained geographical levels such as country, state, and areas. This study is limited to users having the automatic geotagging 
feature of tweets enabled which allows tracking and analyzing users’ location during the disaster event. However, this feature has been 

7 www.ushahidi.com/. 
8 en.wikipedia.org/wiki/Geofeedia. 
9 www.esri.com/en-us/disaster-response/overview. 
10 crisisresponse.google/. 
11 www.factal.com. 
12 www.hsdl.org/?abstract&did=805223. 
13 www.ushahidi.com/support/examples-of-deployments. 
14 www.hsdl.org/?abstract&did=805223. 
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removed by Twitter in 2019.15 Following a similar line of analysis, Roy & Hasan [43] used the geolocation information of tweets to 
infer the individual evacuation behavior of people during hurricanes including whether people evacuated or not, when did they 
evacuate, and what are their destination points. The study aimed to extract the effect of evacuation behavior on highway traffic. 

Moreover, Uchida et al. [44] implemented a real-time system to support the collaborative response through reporting and 
retrieving Twitter disaster-related content. The system combined two web-based subsystems for sharing and mapping information. The 
information-sharing subsystem attaches the user location to the tweet that is used by the mapping subsystem to pin the content on the 
map. The system started operating in early 2015 and improved further in 2017 [45]. Kosugi et al. [46] introduced a better and 
user-friendly web-based real-time system to support collaborative response with the same use cases including (1) reporting, (2) dis
playing reports (latest or nearby) and facilities’ locations (evacuation places or disaster base medical centers), and (3) searching re
ports. Several other state-of-the-art applications of social media informatics in disasters are reviewed by Zhang et al. [47] and their 
challenges are highlighted. The authors also determined some research frontiers for social media informatics in the disaster man
agement domain. 

At the other end of the spectrum, a large body of the technical literature focuses on different geolocation tasks (e.g., user location 
prediction, tweet location prediction, and location mention extraction and disambiguation) and data domains (news articles, research 
articles, social media posts, etc.) [22]. The central task among these is the LMR task as it aids them by extracting evidence from the text 
for the user location, tweet location, incident location, etc. Location taggers have to address many challenges associated with the 
nature of the Twitter stream, such as tweet sparsity (short text of 280 character limit), processing noisy tweet stream (slang with lots of 
nicknames, abbreviations, shortcuts, etc.), processing rapidly changing stream with new emerging LMs [48]. Other technical chal
lenges involve the time constraint of the solutions, the efficiency of deployment, and the coverage of a variety of areas instead of 
limiting the search space to pre-loaded gazetteers [48]. There are also task-specific challenges that have to be addressed, including 
toponymic polysemy, i.e., toponyms having multiple meanings. For example, “Washington” could mean the “Washington DC state” or 
the president “George Washington” [49]. Additionally, the lack of context when mentioning references of the general locations is a 
common challenge in crisis-related social media posts [6]. For example, during flooding, users could mention “the river” instead of 
mentioning the name of the flooded river because the geographic context is known among users discussing the event. 

2.3. Location Mention Recognition for crisis management 

Existing LMR studies exploit different techniques and features to extract Location Mentions (LMs) from text. Several of the proposed 
approaches are gazetteer-based in which public geo-positioning databases are employed, such as Geonames16 [50,51], Open
StreetMap17 [32,51,52], Official New Zealand gazetteer18 [53], and Alexandria Digital Library Gazetteer19 [54], among others. 

One important processing step in gazetteer-based approaches is the matching phase. Different matching methods were proposed, 
such as language modeling [52], rule-based methods [50], lexical-based methods [51], and ensemble-based parsers (lexico-semantic 
and machine learning techniques) [53]. Although the gazetteer-based models achieve relatively high precision, as they verify the 
candidate LMs using gazetteers, their main drawback is the inability to detect toponyms that do not appear in the gazetteers. To evade 
acquiring annotated data at all, which is a bottleneck during emergencies, Al-Olimat et al. [32] proposed an unsupervised statistical 
tagger that identifies the LMs by traversing a tree of n-grams while matching them against region-specific gazetteers. While all those 
studies explore ways to improve the recognition methods, we explore, in this work, the choice of training data to overcome this 
challenge. In particular, we study the effectiveness of exploiting available in-, cross-, and out-of-domain training data to build LMR 
models that learn the patterns of location in tweets without relying on gazetteers. 

Alternatively, there are supervised learning techniques that are exploited for LMR. In the fifth Australasian Language Technology 
Association (ALTA) shared task on identifying LMs in tweets [55], the participants explored several techniques such as feature en
gineering, ensemble classifiers, rule-based classification, knowledge infusion, CRFs sequence labelers, and semi-supervision tech
niques. They also explored different feature types, including geospatial, structural, and lexical features. Using noisy gazetteers and a 
variety of hand-engineered features showed improvements in many comparisons. However, there is still a big room for improvement to 
build robust LMR models with a minimal cost, which we explore through training BERT-based LMR model (with no expensive 
hand-engineered features or gazetteers) with different combinations of available data (with no data annotation, at least initially). 

An intuitive solution for the LMR problem is to employ existing NER tools, since the LMR task is a subtask of the NER task. For 
instance, the StanfordNER model was employed for this purpose by several studies [55–57] after retraining it on Twitter datasets to 
effectively identify the location mentions in tweets. Nizzoli et al. [58] employed TAGME20 to identify meaningful short phrases in the 
text and link them to articles on Wikipedia. Wang & Hu [59]: alternatively, adopted the three top systems from the “Toponym Res
olution in Scientific Papers” SemEval 2019 task [60]. Although those studies used general-purpose taggers, their experiments did not 
investigate the gains and losses of considering all types of entities against using only the location entity. In our work, we extensively 
investigate this aspect to understand the effect of focusing the training on location entities on the performance of the LMR models. 

The recent trend of Natural Language Processing (NLP) development is using deep learning approaches and BERT-like models. 

15 twitter.com/TwitterSupport/status/1141039841993355264. 
16 http://www.geonames.org/. 
17 http://www.openstreetmap.org/. 
18 http://www.linz.govt.nz/placenames/find-names/nzgazetteer-official-names. 
19 www.library.ucsb.edu/map-imagery-lab/alexandria-digital-library-gazetteer. 
20 tagme.d4science.org/tagme/. 
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However, up to our knowledge, there are only a couple of studies that exploit deep learning LMR models for the crisis domain [1,35]. 
Wang et al. [35] employed BiLSTM-CRF model [33]. Unlike our work, where we exclude the target data from training, these studies 
used the target events for training and testing. The assumption of the availability of annotated target data is quite impractical during 
the early phases of emergencies, due to the time constraints and cost of data annotation. In our work, we use a BERT-based model [1]. 

Among all the reviewed research studies, there is no single study that explores the setups we propose in this paper. Typically, the 
proposed approaches are trained and tested on the target events, assuming the training data is available at the onset of disaster events, 
which is often not true. Furthermore, none of the existing studies investigate the usefulness of labeled data from past events, as well as 
whether geospatial proximity is an essential aspect that has to be considered when choosing the past events for training. Additionally, 
cross- and multilingual transfer learning techniques are understudied for the location recognition task. The only work that studies the 
cross-lingual setup is by Gelernter & Zhang [61]; but the experiments are conducted on English and Spanish languages with translation 
tools, not the Turkish and Italian languages that we cover in our work. Although there is a lack of large-scale representative recognition 
datasets, at the time of this writing, there is no single study that explores the cost of collecting annotations to mitigate the effect of 
delaying the relief authorities’ response during disaster events. In this work, we present an exploration for the cost of collecting an
notated dataset at the onset of disaster events. 

3. Problem overview 

At the onset of a disaster event, response organizations and first-responders relying on Twitter need geolocation information of 
reports or tweets about the crisis event in general as well as those seeking immediate help. In this case, the goal is to detect the 
mentions of locations in the textual content of a tweet reporting an event or asking for help. This is different than determining the 
location information present in the Twitter user’s profile, which is often used to find the user’s home location. 

Table 1 shows a few tweets with different types of location mentions posted at the time of real-world disaster events. Tweet #1 
during the Chennai Floods in 2015 is requesting a boat to a very specific location (in this case a street name). Similarly, tweet #2 is an 
important situational awareness report about a bridge being collapsed. The author mentions the name of the bridge i.e., “Adayar 
Bridge Saidapet”, which represents a very specific fine-grained location information. Tweet #3 reports the water level at Greens Bayou 
with respect to the National Weather Service standards during the Houston Floods in 2016. The full address is mentioned in the tweet 
as “Greens Bayou at Ley Rd, Houston, TX”. On the other hand, tweets #4 & #5 share floods updates and warning during Houston and 
Louisiana Floods in 2016, respectively. In both tweets, fine-grained locations are mentioned (a river and streets). Differently, Tweet #6 
reports a storm heading south from Evangeline to Allen areas during Louisiana Floods in 2016. Tweet #7 conveys very important 
information about kids safety at “Cashmere kindergarten”. Similarly, tweets #8 & #9 report flooding on the roads of “Ocean city, New 
Jersey”, and “East 8th street” and “Avenue C” streets caused by Hurricane Sandy in 2012. 

We notice that the geolocation granularity of place names mentioned in these tweets vary from coarse-grained to fine-grained. 
While fine-grained locations are considered more actionable, in this work, we do not distinguish between fine and coarse-grained 
locations. We aim to recognize and extract all types of toponyms (i.e., places or location names) from tweets. 

Accordingly, we define the Location Mention Recognition (LMR) task as the automatic extraction of toponyms from text. In this 
work, we limit the scope from two angles; we focus on tweets and more specifically crisis-related tweets that are shared during emer
gencies and natural disasters. 

The problem is formally defined as follows: given a tweet t that is related to a disaster event e, the LMR system aims to identify all 
location mentions Lt = {li; i ∈ [1, nt]} in the tweet t, where li is the ith location mention and nt is the total number of location mentions in 
t, if any. Each location mention may span one or more tokens. In this work, we follow the BILOU annotation scheme with 5 classes,21 

due to its superior performance over the commonly adopted BIO scheme [62–64]. In the BIO scheme, labels identify the position of 
every token in a location mention (LM), e.g., “B” denotes the beginning token of an LM, “I” denotes a token inside an LM, and “O” 
denotes a token outside of an LM. The BILOU scheme extends the BIO scheme with two more positional tags, i.e., “L” denotes the last 
token in an LM and “U” indicates that the LM has only one token such as “London”. Therefore, we define the LMR as a multi-class 
classification task on the token level. 

4. Experimental setup 

In this section, we describe the details of our experimental setup. We present the datasets in Section 4.1 and the experimental 
configurations in Section 4.2. We then discuss the base LMR model in Section 4.3 followed by the evaluation measures in Section 4.4. 

4.1. Datasets 

To answer the research questions listed in Section 1, we mainly need three types of datasets: (i) general-purpose NER dataset, (ii) 
Twitter NER dataset, and (iii) crisis-related multilingual Twitter LMR datasets. Table 2 shows various statistics of all the datasets we used in 
our experiments, which are described below.  

• General-purpose NER dataset: A well-known candidate for this category is the CoNLL-2003 NER dataset [65], which comprises 
newswire text from Reuters, tagged with four different entity types, namely PER, LOC, ORG, and MISC. Overall, the dataset 

21 BILOU classes are: Beginning, Inside, Last, Outside, and Unit. 
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contains 22,137 sentences and 35,089 entities. We use the standard training and development segments for training and tuning 
hyper-parameters.  

• Twitter NER dataset: We use the Broad Twitter Corpus (BTC) as our Twitter NER dataset [66]. It consists of 9,515 tweets, which 
are tagged with three entity types, namely PER, LOC, and ORG. The dataset has a broad coverage of spatial, temporal, and social 
aspects. Various segments in the dataset represent different types of data collection and annotation methodologies. For instance, 
Segment A comprises random samples of UK tweets about “New Year”. We randomly sampled 90% of the dataset for training and 
10% for development.  

• Crisis-related Twitter LMR datasets: As the main focus of this work is to guide the development of a robust LMR system for 
toponym extraction from crisis-related tweets, we use several Twitter datasets from real-world disasters to perform extensive 
experiments. In total, we use seven datasets in this category; three of them represent floods, two earthquakes, one hurricane, and 
one blackout. The floods datasets consist of 4,500 tweets from Chennai Floods 2015, Louisiana Floods 2016, and Houston Floods 2016 
[32]. The tweets in these datasets are tagged using several location-related tags. In this work, we only use inLOC and outLOC, which 
indicate if the location is within or outside the disaster affected areas, respectively. We further filter out all hashtags used to collect 
the datasets, thus limiting their effect towards biasing the models’ training process. The remaining four datasets in this category are 
adopted from Middleton et al. [48]. This source contains 6,386 multilingual tweets in total. It contains English, Italian, and Turkish 
tweets from four disasters, namely Hurricane Sandy 2012, Christchurch Earthquake 2012, Milan Blackout 2013 and Turkey Earthquake 
2013. Hurricane Sandy and Christchurch Earthquake are English language datasets, Milan Blackout is in Italian language, and Turkey 
Earthquake is in Turkish language. 

4.2. Experimental configurations 

We used several training and testing configurations in our experiments. In this section, we first define the adopted terminology, 
then discuss the different generic experimental configurations. 

We define the “source dataset” as the dataset (or the combination of datasets) that we use to train our LMR model and the “target 
dataset” as the dataset on which we test our LMR model. The source dataset can be of any document type (e.g., web articles or tweets) 
and of any topic type (e.g., general or event-oriented); however the target dataset is always a crisis-related Twitter dataset. 

Table 1 
Tweets from real-world disaster events with location mentions (underlined). HRC, EQK, and FLD refer to Hurricanes, Earthquakes, and Floods, respectively.  

Dataset Tweet # Tweet text 

Chennai FLD Tweet #1 [user_mention] Dear Friends, Pl help by sending boat to 54 and 58, Vivekananda Nagar Street, Nesapakkm, Chennai […] 
Tweet #2 [user_mention] Fear bridge being washed away. Adayar Bridge Saidapet. Hope TVK bridge is holding up fine at Malhar [url] 

Houston FLD Tweet #3 #USGS08076700 - Greens Bayou at Ley Rd, Houston, TX is above NWS flood stage (30ft) [URL] 
Tweet #4 FWD cancels Flood Warning for North Bosque River at Valley Mills [TX] [url] #ntxwx 

Louisiana FLD Tweet #5 Flash Flood Warning for Livingston, St. Helena, and Tangipahoa Parish in LA until 7:45am Saturday. 
Tweet #6 This line of storms in Evangeline is moving to the southwest towards Allen, which will bring heavy rainfall #LAwx [url] 

ChCh EQK Tweet #7 RT [user_mention]: all kids safe at Cashmere kindergarten. #eqnz 
HRC Sandy Tweet #8 All roads into and out of Ocean City, New Jersey are closed due to flooding that has cut off the popular Jersey…[url] 

Tweet #9 Flooding at East 8th and Avenue C before the blackout (GIF) [url]  

Table 2 
Statistics of the datasets used in our experiments. The numbers in parentheses shows the percentage of training data. HRC, EQK, and FLD refer to Hurricanes, Earth
quakes, and Floods, respectively. For the annotations, “U” denotes a single-token (unit) LM. “B”, “I”, and “L” denote the beginning, inside, and last tokens of an LM, 
respectively. “O” denotes non-location token.  

Dataset Lang Country # Docs # Locs Annotations 

B I L U O 

CoNLL-2003 EN Global 22,137 10,645 1,041 (69) 116 (70) 1,041 (690 6,099 (67) 250,660 (68) 
BTC EN Global 9,383 2,852 665 (100) 293 (100) 665 (100) 2,187 (100) 168,721 (100) 

Chennai FLD EN IND 1,500 2,226 840 (80) 275 (78) 840 (80) 1,386 (80) 22,194 (70) 
Houston FLD EN US 1,500 1,701 508 (81) 155 (84) 508 (81) 1,193 (81) 22,114 (70) 
Louisiana FLD EN US 1,500 1,396 227 (81) 77 (78) 227 (81) 1,169 (81) 24,620 (69) 
HRC Sandy EN US 1,996 735 665 (79) 665 (79) 595 (81) 70 (76) 32,525 (70) 
ChCh EQK EN NZ 1,999 291 220 (79) 220 (79) 544 (80) 71 (77) 27,633 (71) 
Milan Blackout IT IT 391 705 114 (71) 27 (78) 114 (71) 591 (69) 6,083 (71) 
Turkish EQK TR TR 2,000 442 28 (68) 0 (0) 28 (68) 414 (71) 16,081 (68)  
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Furthermore, we use different terminology to articulate the match between the source and target datasets in our experiments. We 
use “domain” to refer to the domain of the target dataset, which is always of a specific disaster type. We use “in-domain” to denote the 
case when the source and target datasets are of the same disaster type, e.g., a hurricane. We use “cross-domain” to denote the case 
when the source and target datasets are both disasters but of different types (e.g., earthquake vs. flood). We use “out-of-domain” to 
denote the case when the source dataset is not a disaster dataset (e.g., general tweets or web articles). 

Using the above terminology, we define different configurations based on the source and target datasets as follows:  

• <source dataset>.ner denotes the case when we use the NER source dataset with all entity types (e.g., LOC, PER, ORG, and MISC) in 
the BILOU scheme.  

• <source dataset>.loc denotes the case when we use the NER source dataset with only the LOC entity and discard all other entity 
types (e.g., PER, ORG, and MISC). By doing so, we convert the LOC entity into the BILOU scheme and the non-LOC entities are 
labeled as “O”.  

• DIS.others denotes the case when the source dataset includes all English disaster datasets, regardless of the type, except the target 
dataset. For example, if the target event is Chennai Floods, then we use the other two flood events (i.e., Louisiana Floods and Houston 
Floods) in addition to the hurricane and the earthquake datasets for training. 

• DIS_<source_type>.others denotes the case when the target disaster is of different type than the source_type, which (in our experi
ments) can be either Floods (FLD), Hurricane (HRC), or Earthquake (EQK).  

• DIS_<source_area>.others denotes the case when the target disaster happens in a different geographical area than the source_area, 
which (in our experiments) can be either India (IN), the United States (US), or New Zealand (NZ).  

• Combined denotes the case when we use different document types (i.e., web and tweets) in our source dataset. In this case, we use 
joint (seq) to denote the case when we feed the different types together in one stage (sequentially in two stages) while training our 
model.  

• <source dataset>_%Target denotes the case when we use a percentage of the target data for training.  
• Cross-lingual_Zero_shot denotes the case when we train on a disaster dataset in a source language and test on a different target 

language. For example, we train on English datasets but test on Italian or Turkish datasets.  
• Cross-lingual_Few_shots denotes the case when we train on a disaster dataset in a source language with a few examples from a 

different target language. We test on the target language. For example, we train on English datasets combined with a few Italian or 
Turkish tweets, but test on Italian or Turkish datasets.  

• Multilingual_Few_shots denotes the case when we train on disaster datasets in multiple languages including the target language and 
test on the target language. For example, we train on all available languages, and test on the Italian or Turkish datasets. 

4.3. LMR model 

Pretrained models, such as BERT, have shown impressive performance in the sequence modeling tasks including the NER task [24]. 
In this work, we employ the BERT-LARGE-CASED model in all experiments, except for the Corss- and multi-lingual training, we use the 
BERT-BASE-MULTILINGUAL-CASED model. We added a linear classification layer on top of the BERT model and fine-tune it using the 
source datasets. For Twitter datasets, we preprocessed the tweets to remove ‘RT’ token (indicating retweets), user mentions, non-ASCII 
characters, and URLs. We also segmented the hashtags using the word segment library,22 since some location mentions appear as 
subtokens of hashtags in the adopted datasets. 

During training, we tuned the batch size, number of training epochs, and the learning rate hyper-parameters using the value ranges 
recommended by Devlin et al. [24] as: batch size of 16 or 32, number of epochs of 2, 3, or 4, and learning rate of 5E-5, 3E-5, or 2E-5. 

For every experimental configuration, we search the space of hyper-parameters using the grid search method on the development 
set. We further experiment with five different seed initialization values for every combination of hyper-parameters, seeking the 
reliability of the results, and eventually use the median F1 score from the five runs. We finally select the best combination of hyper- 
parameters, and report its F1 score on the test set. We found the best hyper-parameters are mostly different from the default settings 
across different training setups [1]. There is no one combination of hype-parameters that fits all experimental setups (refer to results in 
Table 6, Appendix.A). 

4.4. Evaluation measures 

To measure the effectiveness of the LMR model over different setups, we compute Precision (P), Recall (R), and their harmonic 
mean (F1 score) for each entity (i.e., location mention) using the seqeval (v1.2.2) package,23 which adopts the evaluation scripts used to 
evaluate the chunking tasks (e.g., named-entity recognition) in CoNLL-2000 NER shared task [67]. The package evaluates the model’s 
output on entity-level rather than token-level.24 We use the default micro-average metric to account for the class imbalance issue in our 
datasets (see class distributions in Table 2). 

5. Results and analysis 

In this section, we discuss the seven research questions in detail, we present the experiments that we carried out to answer each of 

22 http://www.grantjenks.com/docs/wordsegment/. 
23 https://pypi.org/project/seqeval/. 
24 The seqeval package uses all predicted and all gold LMs to compute precision and recall, respectively. Malformed tags sequences are discarded from evaluation. 
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them, and we analyze their results. We explore the usefulness of exploiting out-of-domain training data with either multiple entity types 
such as person and organization alongside the location (Section 5.1) or with location entity alone (Section 5.2). We further study the 
performance when training on in-domain and cross-domain data in Sections 5.3 and 5.4, respectively. We then study the performance of 
the LMR models when considering the geographic proximity of disaster events during training (Section 5.5). Moreover, we discuss the 
effectiveness of cross-lingual setting when training on data in different languages than the language of the tweets discussing the target 
event in Section 5.6. We finally explore the gain in performance when incrementally acquiring training data from the target disaster in 
Section 5.7. 

5.1. General-purpose (out-of-domain) training with multiple entities (RQ1) 

Due to the limited LMR labeled data, we study the effect of using general-purpose NER datasets to train our LMR model. We 
hypothesize that since the general-purpose NER data is larger in size and has location as one of the entity types, using it might be 
sufficient to train models that effectively recognize toponyms in tweets posted during disasters. This is useful in emergencies when time 
is critical and acquiring new training data is time-consuming and expensive. The delay in response may negatively affect relief actions. 

To this end, we explore the usefulness of the general-purpose NER dataset vs. the Twitter NER dataset for the LMR task. We use the 
following training settings:  

• CoNLL.ner: using the CoNLL-2003 dataset with all entity types (LOC, PER, ORG, and MISC) for training.  
• BTC.ner: using the BTC dataset with all entities (LOC, PER, and ORG) for training. 

We test our LMR model on each crisis-related Twitter dataset (refer to Section 4.1). Fig. 2 presents the results (the second and third 
bars from left in all charts). In all datasets, except Hurricane Sandy, the BTC.ner model outperforms the CoNLL.ner model, suggesting 
that the general-purpose datasets that are built on documents written in formal language might not be suitable for disaster-related 
tweets. However, the performance of such models is comparable in the case of Hurricane Sandy. 

To answer RQ1, we conclude that Twitter NER datasets are more effective than general-purpose NER datasets for training an LMR 
model for toponyms recognition in disaster-related tweets. While the general-purpose NER models did not outperform the Twitter- 
based models in any of the setups above, the general-purpose NER datasets are indeed a valuable resource for training an LMR sys
tem when no other data is available e.g., at the onset of a disaster event. They exhibit an acceptable performance ranging between 0.5 
and 0.6 F1 (with even better performance if trained only on LOC entities, see RQ2 below) given the unavailability of Twitter data. 

5.2. General-purpose (out-of-domain) training with location entities (RQ2) 

Similar to RQ1, we aim to determine the effectiveness of an LMR model trained on general-purpose (out-of-domain) datasets, but 
this time excluding non-location entities such as PER, ORG, etc. 

To this end, we adopt the following training settings:  

• CoNLL.loc: using the CoNLL-2003 dataset with only the LOC entity.  
• BTC.loc: using the BTC dataset with only the LOC entity. 

According to the results in Fig. 2 (considering the fourth and fifth bars from left in all charts), training the LMR model using only 
LOC entity improves the performance by 5.6–22.7% and 2.6–22.6% across the different disasters for CoNLL and BTC, respectively. We 
noticed that the improvement is clearly evident in precision but not recall (refer to results in Table 6 in Appendix.A), suggesting that 
focusing the training on locations only significantly improves the precision of recognizing locations with little or no degradation in 
recall (except for Hurricane Sandy’s where degradation reached about 12%). 

We anticipate the reason to be the distinct patterns of LMs compared to other entities in the data. For instance, different from other 
types of entities, location mentions are usually attached to their category (e.g., LOC street, LOC city, etc.) or surrounded by adpositions 
such as “near”, “at”, or “10 Km away from”. Based on such results, we conclude that the location-specific datasets are better for training 

Fig. 2. The results of exploiting out-of-domain general purpose datasets for training an LMR model.  
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the LMR model compared to the general-purpose NER datasets, which answers RQ2. 
Although the CoNLL-2003 dataset is 2.4X larger in size and it contains 3.7 times the number of LMs compared to the BTC dataset, 

we notice that BTC.loc model is better than CoNLL.loc on the three flood datasets, but not on Hurricane Sandy and Christchurch 
Earthquake datasets. Upon investigation, we interestingly found a noticeable overlap between some of the top frequent LMs in those 
two datasets (i.e., Hurricane Sandy and Christchurch Earthquake) and CoNLL-2003 dataset, which justifies such an unexpected high 
performance. For example, one of the top frequent LMs in Hurricane Sandy dataset is “New York”, which appears 289 times (208, 24, 
and 57 times in training, development, and test sets, respectively). The same LM appears 123 times in CoNLL-2003 dataset (100, 23, 
and 27 in training, development, and test data, respectively). Similarly, the second top LM in Christchurch Earthquake dataset, which 
is “New Zealand” with frequency = 57 (40, 5, and 12 times in training, development, and test data, respectively), is mentioned 50 times 
in CoNLL-2003 dataset (41, 9, and 10 in training, development, and test data, respectively). On the contrary, the top 3 most-frequent 
LMs in Chennai, Houston, and Louisiana Floods appear 0, 16 (12, 0, and 4 in training, development, and test subsets, respectively), and 
0 times, respectively, in CoNLL-2003 dataset. 

5.3. Crisis-related training (RQ3) 

Thus far, we confirmed our need for location-specific data to train the LMR system. However, the location mentions in the general 
stream, in contrast to disaster-specific streams, might appear in different patterns. To clarify, people tend to use more accurate and full 
addresses of locations when reporting incidents happening during emergencies, aiming to help responders make immediate actions (e. 
g., Tweet #1 in Table 1). To investigate further, we train our LMR model using a combination of the BTC.loc dataset (as using it 
achieved the best F1 score earlier in most of the datasets) and the available crisis-related datasets. By this, we aim to address RQ3: Does 
training on crisis-related Twitter datasets improve the performance of the LMR system compared to the general-purpose Twitter datasets? 

An interesting aspect to explore in this context is the effect of combining the in-, cross-, and out-of-domain data. To address this, we 
train an LMR model using crisis-related datasets with BTC NER dataset as follows.  

• DIS.others: combining all disaster datasets except the target disaster for training.  
• Combined.joint: combining in-, cross-, and out-of-domain datasets for training. Specifically, we use BTC.loc and all DIS.others for 

training. All the datasets are merged before training.  
• Combined.seq: using BTC.loc and DIS.others for training; however, we first train a model using the former and then fine-tune it using 

the latter. 

We show the results of these runs in Fig. 3. Generally, the results are not consistent across disasters, hence we cannot draw a clear 
conclusion on which setup is clearly the best. As references, we compare the results with the case when we train on the target dataset 
(denoted as Target in Fig. 3) and with BTC.loc (as using it mostly achieved the best F1 score among the non-target setups). It is evident 
that using training data other than the target data shows significant degradation in performance with respect to the Target model. This 
finding emphasizes the importance of providing in-domain (i.e., Target) data to achieve better effectiveness. Additionally, employing 
only in- and cross-domain data (i.e., DIS.others) shows improvement against BTC.loc, except for the Chennai Floods. These results 
confirm the potential of using in- and cross-domain data for better performance. 

Moreover, combining in-, cross-, and out-of-domain training data provide reasonable performance, that is comparable to DIS.others, 
for early location extraction when a sudden disaster happens. In the worst scenario, such a reasonable model can be employed to 
automatically augment labeled data to improve the performance over time. This can be achieved by exploiting active learning, 
automatic labeling, among other known data augmentation techniques. 

Furthermore, the Combined.seq setup is slightly better than the Combined.joint setup by approximately 1.6% on average across all 
datasets, except for the Chennai Floods. This is intuitive since the fine-tuning, exclusively on in- and cross-domain disaster data, should 
have a bigger impact on the model than training on combined data. 

To answer RQ3, we conclude that using disaster-related training data helped improve the LMR model by 5.3% on average for all 

Fig. 3. The F1 results of exploiting in- and out-of-domain data for training an LMR model.  
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datasets except Chennai Floods. 

5.4. Cross-domain training (RQ4) 

Although using disaster-related training data showed slight gains in most cases, the improvement is still far from the Target per
formance. We anticipate the problem to be the difference in disaster types that we employed for training. Consequently, we study the 
effect of training on cross-domain data, i.e., training on data from previous disasters but of a different type than the target, compared to 
the case when both the source and target disasters are of the same type. In this section, we address RQ4: Is training on combined data 
from different types of crisis events (cross-domain) better than training on data from the same type of events (in-domain)? 

To this end, we use the following training setups:  

• DIS_FLD.others: using data from all flood events for training and testing on other disasters (in this case, other disasters are of type 
FLD, HRC, and EQK).  

• DIS_HRC.others: using data from the hurricane event for training and testing on other disasters (in this case, other disasters are of 
type FLD and EQK).  

• DIS_EQK.others: using data from the earthquake event for training and testing on other disasters (in this case, other disasters are of 
type FLD and HRC). 

Fig. 4 shows the results. The missing bars in the case of Hurricane Sandy and Christchurch Earthquake are due to the fact that we 
only have one hurricane event and one earthquake event. 

Looking at the results when the target type is floods (the first three sub-figures), training on disasters of the same type as the target 
(FLD) consistently achieves better performance compared to training on HRC and EQK data. Interestingly, the performance of training 
on FLD and HRC are slightly close for the Houston and Louisiana Floods. We suspect the reason to be the close geographical proximity 
between the affected areas of Hurricane Sandy, Houston Floods, and Louisiana Floods which enhances the model’s ability to detect 
more LMs. 

We also notice that training on EQK data is consistently the worst across all disasters. Upon investigation, we found that the location 
distribution in Christchurch Earthquake is highly skewed (refer to location distributions, Figs. 9–13 in Appendix.B). Specifically, the 
location mention “Christchurch” constitutes 262 out of 527 locations (49.7%) and 84 out of 156 locations (53.8%) in the training and 
test data, respectively. Moreover, 68% of the tweets constituting this dataset have no locations. For this reason, we believe that this 
dataset is inadequate for training compared to other datasets. 

To answer RQ4, we found training on disasters of the same type generally achieves better performance. To further understand these 
results, next we explore how the geospatial proximity of source events to the target event affects the performance. 

5.5. Geo proximity-based training (RQ5) 

The location mentions from within the affected areas of a target disaster are expected to emerge in the tweets stream over time. 
However, such locations may not be seen by LMR models trained on past disaster events. We anticipate that employing an LMR model 
trained on the closer geographical area as the target disaster (within the same country in our experiments) can alleviate this issue. A 
concrete example of this is the case of Louisiana Floods when trained on Hurricane Sandy data (refer to the previous section). To 
elaborate, not all countries exhibit the same naming formats (e.g., using street numbers in contrast to names) and administrative levels 
(e.g., states, counties, etc.). In this section, we address RQ5: How does the geospatial proximity of source events to the target event affect the 
performance? 

To address this question, we use the following training settings:  

• DIS_US.other: combining all events from the USA except the target for training. For example, if the target disaster is Hurricane 
Sandy, we train on Houston and Louisiana Floods.  

• DIS_IN.FLD: training on Chennai Floods happened in India. 

Fig. 4. The F1 results of training on cross-domain data. Missing bars means there is no more than one disaster dataset of target type.  
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• DIS_NZ.EQK: training on Christchurch Earthquake happened in New Zealand. 

Due to the lack of diverse disaster-specific labeled data for the LMR task, we could conduct experiments only on target datasets of 
disasters that happened in the US; for other areas (NZ and IN), we do not have more than one disaster-specific dataset. Nonetheless, the 
results in Fig. 5 clearly indicate that training on source disasters that happened in close proximity areas (with respect to the target 
event) achieves the best performance regardless of the disaster event type. To answer RQ5, we suggest training on disasters that 
happened in close proximity areas to the location of the target event to achieve the best performance regardless of the type of the 
“source” and “target” disasters. 

Fig. 5. The F1 results of training on geo-proximity-based data.  

Fig. 6. The F1 results of cross-lingual and multilingual training.  

R. Suwaileh et al.                                                                                                                                                                                                      



International Journal of Disaster Risk Reduction 78 (2022) 103107

13

5.6. Cross-lingual training (RQ6) 

Thus far, we studied the performance of the LMR model from different aspects (i.e., entity type, disaster type, geographical 
proximity) in a monolingual setup. However, disasters may occur in areas of low-resource languages (e.g., Italian and Turkish) in 
which little or no training data is available. This motivates us to study the performance of LMR models in cross- and multilingual 
setups. In this section, we address RQ6: Can a model trained on one language effectively recognize location mentions in another language? 

To address this research question, we select three languages, namely, English, Italian, and Turkish based on the availability of 
labeled data. The source language can be monolingual (English only), bilingual (English and Italian, or English and Turkish), or 
multilingual (English, Italian, and Turkish). The target is either Italian or Turkish. 

We use the following setups:  

• Cross-lingual_Zero_shot: we fine-tune multilingual BERT on the monolingual source language (English) using the Combined.joint and 
test on the target language (Italian or Turkish).  

• Cross-lingual_Few_shots: we fine-tune multilingual BERT on the monolingual source language (English) and a little data from the 
target language (bilingual). We then test on the target language.  

• Multilingual_Few_shots: we fine-tune multilingual BERT on the training data of all available languages including the target language 
(multilingual). We test on the target language. 

Fig. 6 demonstrates that the performance of Cross-lingual_Zero_shot is acceptable but still far away from the improvement level 
achieved by the Target setup. However, adding little training data from the target (312 and 1400 from the Milan Blackout and Turkey 
Earthquake disasters, respectively) in Cross-lingual_Few_shots and Multilingual_Few_shots setups significantly increases the F1 score of the 
LMR model to beat the Target setup by 4.6% and 3.9%, respectively. 

Interestingly, Multilingual_Few_shots is slightly better than the Cross-lingual_Few_shots for both Milan Blackout and Turkey Earth
quake. We anticipate the reason to be the popularity of Italian and Turkish languages in both countries. To investigate, we analyzed the 
language distribution of both datasets using the langdetect tool.25 We show the distribution of languages in Fig. 7. Surprisingly, the 
Italian and Turkish tweets constitute only 87.7% and 25.4% of the Milan Blackout and Turkey Earthquake datasets, respectively. The 
Turkish dataset is much noisier than the Italian dataset due to the popularity of other languages in the country.26 Additionally, the 
Turkey Earthquake dataset contains 2.2% Italian tweets which might explain its usefulness in training when the target is the Italian 
language. To answer RQ6, we conclude that training the multilingual LMR model with no target data achieves fair performance, but 
using as little as 263–356 training examples in the target language, which constitutes 87.7% and 25.4% of the Milan Blackout and 
Turkey Earthquake training data, respectively, notably improves the performance. 

5.7. Incremental training with target (RQ7) 

To this end, we confirmed the need for using reasonably large disaster-specific training data (non-target data) to build an 
acceptable performing LMR model at the onset of the disaster events. Nevertheless, training robust (highly accurate) LMR model is 
crucial during emergencies as relief responders are expected to use the geolocation information from these models to make critical 
decisions. According to our findings in addressing the previous research questions, the LMR models have to be trained on target data, 
whenever available, to reach the highest possible performance. To simulate the process of acquiring target labeled data during disaster 

Fig. 7. The language distribution in Milan Blackout and Turkey Earthquake datasets.  

25 https://pypi.org/project/langdetect/. 
26 https://en.wikipedia.org/wiki/Languages_of_Turkey. 
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events, we study the effect of gradually feeding the LMR model with increasing amounts of the target data. Precisely, we aim to 
determine the minimum number of tweets to annotate from the target data to improve the model performance before reaching a stable 
performance. 

In this section, we address RQ7: How many target event tweets are required to train a reasonably performing (i.e., F1 > = 0.70) LMR 
model? To answer this research question, we explore two aspects: (1) the number of tweets to annotate before reaching a high stable 
performance, and (2) the best base training data to start with besides the target data. Furthermore, we assume our annotation budget (i. 
e., cost and time) is sufficient to label 1050 tweets from every disaster. We first train our model with a base training dataset, then 
incrementally add 105 tweets in chronological order from the target event. This number constitutes 10% of the entire training data that 
can be labeled within our predefined budget. We use only the floods datasets as they contain the tweets’ timestamps that we used for 
the chronological sorting of the training data. 

We experimented with three different setups of base training datasets:  

• Cold-Start+%: we do not use any base training data. This setup simulates the scenario when there is no data to pre-train the LMR 
model.  

• BTC.loc+%: we use BTC dataset with only LOC entity type as the base training data. This setup simulates the scenario when we do 
not have disaster-related tweets to use for training.  

• Combined.seq+%: we use the best performing data setup as the base training data (refer to Section 5.2). This setup simulates the 
scenario when we have general-purpose and disaster-related tweets data for training. 

In all setups, we increment the training with 10% from the target data and report performance at each increment. As a reference, we 
also show the Target baseline, i.e., when training only on the entire 1050 training tweets.27 

Results in Fig. 8 show that in all training setups, increasing the training data improves the performance continuously. We also 
notice performance stability when reaching 70% of the target data (training on 735 tweets) and afterward across all base setups for all 
datasets. Additionally, using Combined.seq and BTC.loc base training is clearly better than the Cold-Start setup until we reach 40% in 
Chennai and Houston Floods and 20% in Louisiana Floods. Furthermore, Combined.seq is even more promising compared to BTC.loc as 
it contains cross- and in-domain data (i.e., disaster-specific tweets) that seem to slightly improve performance over time. Indeed, these 
observations show the advantage of exploiting external training data (i.e., out-of-domain or cross-domain) at the onset of disasters to 
allow some time until collecting target data for training. 

Although the cold-start setup of base training is the worst compared to BTC.loc and Combined.joint, it exceeds F1 of 0.8 when using 
approximately 30% of the target training in Chennai and Houston and 20% in Louisiana. This again emphasizes the need for target data 
for training. 

The results also indicate that, once we have labeled about 1000 tweets from the target event, there is almost no benefit of leveraging 
other external training data. 

Therefore, for RQ7, we suggest training on all available training data regardless of their domain at the onset of a disaster event to 
allow some time for annotating target tweets. As for the budget of annotation, we suggest labeling around 500 tweets to achieve 
reasonable performance (about 0.9 F1 in the three disasters we experimented with), in addition to the cross- and out-or-domain 
training. 

6. Error analysis 

To better understand the different types of errors that our best model makes, in this section, we closely examine the results of the 
model. Specifically, we investigate the results obtained from the Target setup for the five English disaster datasets. 

Fig. 8. The F1 results of incrementally training on target data.  

27 Note that the performance of the Target in these experiments is different than previous research questions due to sorting tweets chronologically. 
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6.1. Error types 

We examine four types of errors, i.e., false positives, false negatives, partial matches, and malformed on the entity level. Given the fact 
that LMs can be composed of more than one token (e.g., “New York”), we look at cases where the predicted LM tokens either partially 
match the corresponding gold LM (i.e., “partial match -”) or contains extra tokens compared to its gold LM (i.e., “partial match +”). We 
denote these cases as partial matches. Additionally, any predicted multi-token LM must start with B-LOC tag, end with L-LOC, and I- 
LOC used for in-between tokens, otherwise, it is considered malformed LM. Table 3 shows the number of errors representing false 
positives, false negatives, partial matches, and malformed LMs (in the test set only). Table 4 shows example tweets along with their 
error types highlighted. 

The false positives are mostly valid fine- and coarse-grained LMs that are not annotated in the datasets. For example, “HCSO” in 
tweet #1 and “manassas” in tweet #2 refer to fine- and coarse-grained LMs, respectively, that were not labeled as such. The false 
negatives are common in all datasets, which implies that the model perhaps still needs more data to better recognize the LMs (tweets 
#3–6, 12–14). The partial matches are more common in Chennai and Houston Floods compared to other disasters. The partial errors 
and malformed sequences of BILOU tags are more common in Chennai Floods because the gold annotations in this dataset inconsistently 
sometimes include the location type (e.g., area) and prepositions (e.g., beyond, along, etc.) as part of the LM (e.g., tweet #7) which 
potentially confuses the model. Additionally, there are location types such as “mosque”, “ATM”, “area”, to name a few cases, that are 
annotated as unit locations (U-LOC), e.g., in tweet #6. These annotation decisions confused the model as to whether recognize these 
LMs as part of precedence LMs, or as independent LMs. 

Below we list our general observations based on the close examination of these errors.  

a. Surprisingly, we observed that most of the false positives are indeed valid LMs. They are either fine- or coarse-grained locations that 
are not annotated in the datasets. This highlights a potential issue with the existing datasets. We note here that some of the LMs are 
not actual location names but were used within a general context such as “Louisiana” that is mentioned to describe the way grills 
are cooked in tweet #3. However, other LMs like “manassas” in tweet #2 should be detected by the LMR model.  

b. There are LMs that are misspelled such as “Christchurh” in tweet #4 and concatenated such as “apollohospitals” instead of “apollo 
hospitals” in tweet #5. This indeed emphasizes the need for an accurate preprocessing pipeline, including spell checking and 
hashtag segmentation, before the recognition phase.  

c. There are location types that are not actual geographical points such as “area”, “ATM”, “mosque”, etc. An example of this issue is 
tweet #6. We suggest filtering these sources of errors before using the datasets for training.  

d. There are inconsistent annotations of LMs. LMs that appear multiple times in the dataset are not always annotated using the same 
sequence of BILOU tags. For example, the “South Texas” appears “southO TXU”, “southO TexasO”, and “SoutheastB TexasL” in the 
same dataset. Also, “HCL office” appears twice in tweets, but it is labeled once as a multi-token LM and another time only the “HCL” 
is labeled as a single token LM (e.g., tweets #11 and #12). Additionally, the “5th street” in tweet #10 appears twice in the dataset, 
but it is labeled as a LM in the original tweet, but not in its retweet.  

e. There are ambiguous locations that we could not resolve to existing locations such as “World”, “Swayamsevaks”, “Congress”, etc. 
An example of this issue is tweet #13.  

f. There are abbreviated LMs such as “global hosp” instead of “global hospital” in tweet #14, which adds another level of difficulty to 
recognizing LMs. The issue becomes more challenging when the LM abbreviations are common English words, such as “ok” that 
appear in the training data of Houston Floods dataset to denote “Oklahoma” state (Refer to Fig. 10).  

g. Some ORG entities are correctly labeled by the LMR model as non-location, but they appear in the gold annotations as LMs. For 
example, “FEMA” in Tweet #15 refers to the “Federal Emergency Management Agency”. Additionally, in Fig. 11, the ‘Clinton 
Foundations’ and ‘nytimes’ are ORG entities rather than LOC entities. This issue and its reverse exist across the datasets we adopted 
in our experiments. The reverse of it can be illustrated by ORG entities in Houston Floods event, where “NWS” and “TXDOT” local 
organizations are correctly labeled as LMs by the LMR model, but they are not gold LMs. Discovering such annotations in the LMR 
datasets shows the difficulty of the annotation task conducted by human annotators, as they are confused by whether such entities 
are mentioned within the context of the tweet as organizations or locations of the offices of these organizations. Such confusion 
does negatively affect the LMR model performance. 
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Table 3 
The types of errors in Target runs in English disaster datasets. “Partial match +” and “Partial match -” indicate when the predicted LM contains more or less tokens than 
the gold LM, respectively.  

Error Type Chennai FLD Houston FLD Louisiana FLD HRC Sandy ChCh EQK 

False positive 0 27 11 30 22 
False negative 19 21 17 16 19 
Partial match + 10 5 0 0 0 
Partial match - 18 9 5 7 7 
Malformed 28 12 14 10 6 

Total 75 74 47 63 54  

Table 4 
Examples of errors of BERT-based model. Underlined text is the gold LM. The double-underlined text refers to gold LMs in two duplicates 
of the same tweet. Highlighted text is the predicted LM. 
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6.2. Location types 

We further analyzed the errors based on their granularity level, i.e., fine-grained location mentions such as point-of-interest (POI), 
road/street name, and neighborhood, and coarse-grained locations such as country, county, and state. We first labeled the LMs, which 
represent one of the error types mentioned above, with their granularity level using Google Places API28 and manual search (in case 
Google API does not return any result). 

We show the number of LMs for each granularity level in Table 5. The “Other” type represents locations that were not resolved 
through Google Places API as well as through manual search. Overall, we notice that most of the errors are fine-grained and the 
majority of them originated from flood-related disasters. Moreover, the model seems to make more mistakes in detecting coarse- 
grained locations from Hurricane Sandy and the Christchurch Earthquake (tweets #9 and #4 in Table 4, respectively). 

7. Discussion 

Thus far, we discussed how geolocation information plays an important role in relief activities during emergencies. To tackle the 
LMR problem we studied the choice of training data that can influence the robustness of LMR models. In this section, we elaborate on 
the implications of our study from both the technical and the crisis management domain aspects (Section 7.1). We then discuss the 
limitations of our study (Section 7.2) and the limitations of using geographical information from Twitter (Section 7.3). 

7.1. Implications of the study 

This explorative study has a direct impact on the efficiency of crisis managers’ response at the lowest cost, due to overcoming the 
challenge of collecting labeled data, which forms the bottleneck of running the downstream tasks that rely on geolocation information. 
Avoiding the response delay is the ultimate goal for responders during emergencies. Thus, deviating from the typical focus of LMR 
model development, we focused our exploration on the choice of existing training data. We proposed different factors that could 
influence the performance of the LMR models, such as data domain, entity type, disaster domain, geo-proximity, and language. 

From the technical perspective, we explored two setups: (1) eliminating the labeled data acquisition phase (zero-shot setting), or 
(2) assuming we have a few, as hundreds, of training examples available (few-shot setting). For the zero-shot setup, we studied the 
effect of all the aforementioned factors. We studied the first four factors in monolingual setup and the last factor in cross- and multi- 
lingual setups. 

For all factors, we observed that the performance of the LMR model improves as we focus the training on the factor of interest. For 
example, for the data domain factor, the performance improves as we use more domain-focused training data. While previous studies 
only suggest using Twitter data, our findings suggest prioritizing the datasets based on their domain and then their availability. 
Additionally, training on LOC-only NER datasets can improve the performance by approximately 12% in F1 score. This indeed enables 
the rapid deployment of initial LMR models at the onset of disaster events by using the data at hand. While a relatively good model is 
deployed, more training data from the target disaster event can be labeled to improve the LMR model further. On the responders’ side, 
the quick deployment enables rapid response, but with careful consideration to the degree of uncertainty of the model decisions. 

For the disaster domain and geo-proximity factors, unsurprisingly, we found that focusing the training on the same type of disaster 
and geographically-nearby events as the target disaster event boosts the performance compared to employing events of different types 
or those happened in far-away areas. These two aspects had never been explored in existing studies, so our finding paves the way for 
future successful deployments by suggesting to consider the disaster domain and geo-proximity factors when training LMR models in the 
crisis domain. 

The cross- and multi-lingual setups for LMR are understudied in literature [61], thus we employed the multi-lingual BERT model to 
investigate these setups. Our conclusion for the language factor suggests that even with the absence of training data from the target 
language, we can still build descent LMR model using data from other languages. For responders, regardless of the language used by 
people living in the impacted area by a disaster event, deploying initial acceptable performing models is possible which in turn 
supports their rapid response. 

Furthermore, whenever feasible, we recommend labeling around 500 tweets and combining them with all other available data to 
reach a minimum F1 performance of 85%. Although we noticed the limited annotation budgets by the small size of the available 
datasets [32,48,51,53,55,68] (ranging from 1000 to 6648 tweets), investigating the minimal annotations cost was not explored at all in 
previous studies. This conclusion gives some clues for the response authorities on the budget they may spend to improve 
initially-deployed models. 

28 https://developers.google.com/maps/documentation/places/web-service/overview. 
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7.2. Limitations of the study 

The methodological limitations of our study are associated with the technical aspect of the LMR model and the experimental 
evaluation (setups and datasets). We list the main ones in the following:  

a. Generally, there are two factors related to the construction of the dataset that could affect our results and conclusions. First, the 
datasets that we adopt are scarce with limited coverage of disaster types and geographical areas. Over and above that, the datasets 
are randomly drawn from collected tweet datasets using hashtags. Relying on hashtags is a major limitation for capturing the 
relevant posts discussing the target disaster event, as there are some users not using hashtags while posting about the event [18,69]. 
Additionally, hashtag-based datasets might have different characteristics compared to other datasets collected using different ways 
such as geographical-based datasets, which could affect the drawn conclusions [27].  

b. We explored the effect of the data domain, entity type, disaster domain, and geo-proximity factors in monolingual setup for English 
language in the crisis management domain. Our conclusions might not translate to other languages and domains.  

c. The available datasets for experiments have limited disaster domain and geographical coverage. Thus, while studying the effect of 
associated factors, the conclusions might not translate to other datasets with better coverage and same size for different disaster 
types and geographical areas.  

d. For the language factor, we studied the cross- and multi-lingual setups for English, Italian, and Turkish languages. Hence, we note 
that:  
• The datasets we used, as shown in Fig. 7, are not pure for their respective languages. Further filtering by language is required for 

solid conclusions. However, due to multiple reasons including (1) the small size of the data, (2) the employment of the multi
lingual BERT model, and (3) the concern of making results comparable to future studies, we opted to use the data as is.  

• Generalizing our conclusions to other languages requires further investigation.  
• Our study relied on the power of the multilingual BERT model. Considering contextual translation of the data might lead to 

different conclusions.  
e. We discussed some issues in the annotations of the used datasets in Section 6, that could affect the performance of our BERT-based 

LMR model. Unfortunately, there are no standard guidelines for annotating LMR datasets of a higher standard yet. In fact, the 
annotation guidelines used to train the annotators for constructing the LMR datasets used in our study were not made publicly 
available to the community. 

All the listed issues above motivate the need for a larger, domain and geographically diverse, and consistently annotated LMR 
datasets. We keep the exploration of this issue and the developing of standard annotation guidelines for future work. 

7.3. Limitations of social media data 

In addition to the limitations of our study, there are some limitations related to the information extracted from social media, such as 
incomplete information, false information, etc. Here, we discuss these limitations in the context of extracting geolocation information 
for the crisis management applications [70–73]. We discuss a few in this section: 

• The geolocation information extracted from social media does not generally provide the full picture of the crisis [70], but alter
natively complements other sources of data. A serious challenge caused this is the “digital divide” due to several reasons, such as 
losing internet connection or suffering from the limited connectivity (e.g., cable disruption or displacement) [71], having restricted 
or no access at all to the internet (e.g., low-income communities29), not using social media at all (e.g., elderly), or avoiding social 
media due to safety and privacy concerns (e.g., conflicts and violence events). 

Table 5 
Location types of miss predicted LMs.   

Chennai FLD Houston FLD Louisiana FLD HRC Sandy ChCh EQK Total 

FP FN PM FP FN PM FP FN PM FP FN PM FP FN PM 

Fine-grained 0 11 23 19 11 7 3 13 2 6 6 6 2 6 6 121 
Coarse-grained 0 5 4 4 9 7 3 4 3 21 10 1 20 13 1 105 
Other 0 3 1 4 1 0 5 0 0 3 0 0 0 0 0 17 

Total 0 19 28 27 21 14 11 17 5 30 16 7 22 19 7 243  

29 https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=XO 

R. Suwaileh et al.                                                                                                                                                                                                      

https://data.worldbank.org/indicator/IT.NET.USER.ZS?locations=XO


International Journal of Disaster Risk Reduction 78 (2022) 103107

19

• The datasets are randomly drawn from a bounded period while tracking the event over Twitter (i.e., using hashtags). The tracking 
time might not cover the entire pre-disaster and post-disaster periods in which the underlying causes and consequences of he 
disaster events can be studied [71].  

• The quality of the user-generated text is not guaranteed. Hence, the response authorities have to pre-qualify the posts before 
inferring and extracting the geolocation information during emergencies. Our perception for the required pre-qualification 
(filtering) modules is depicted in Fig. 1 as upstream tasks. We elaborate on the filtering modules in the following:  
– Despite the benefits of using hashtags, there is no guarantee on the integrity of tweets posted on trending hashtags during 

emergencies. Hashtag riding is a common issue as some accounts use them to promote themselves (self-promotion), their ideas 
and believes (propaganda), their products or organizations (commercial), etc. For example, some new agencies might share 
dramatic media and titles about the event to increase their followers and readership [72], let alone the spammer and bot accounts 
that distract the public.  

– The information obtained from social media needs accurate validations for credibility and reliability. Since this issue is more 
severe during the crises, response authorities should account for this.  

– The response authorities would be interested in obtaining the geolocation information for solely the informative posts (e.g., 
situational updates or actionable posts) that help them in performing their activities. That requires the authorities to (auto
matically) filter the posts by informativeness. 

8. Conclusion 

This work contributes towards a crucial task, i.e., Location Mention Recognition in the crisis management domain. We formulated 
several research questions for which evidence-based answers were unknown. We designed an extensive and reliable experimental 
setup where several experiments investigate the effectiveness of training on general-purpose NER datasets from news articles and 
tweets. We demonstrate how the performance of a LMR model varies when trained on formal language (new articles) compared to 
informal language (tweets) as well as when trained on past disasters while considering the type, geoproximity, and language of the 
source and target disasters. Our findings suggest that the general-purpose Twitter NER data is preferred over the general-purpose web 
NER data; and crisis-related Twitter data is preferred over the general-purpose Twitter data. Furthermore, our results suggest that 
training on disaster events data from similar type or geographically-nearby events to the target event boosts the performance compared 
to training on different event types or distant events. We further show how training on previous disasters of a different language than 
the target provides reasonable performing models that can be improved with little training from the target. Moreover, out of our 
investigation on the minimum number of tweets to label form the target event, we recommend labeling around 500 tweets and 
combine them with all available data to obtain an LMR model that hits a performance level greater than 85% F1 score. Overall, we 
remark that our findings shape the future directions in this line of research. 

In addition to addressing the discussed limitations of our study, we plan, in the future, to work on the technical aspects of this work. 
This involves improving the learning model, using more advanced computational transfer learning methods to mitigate the negative 
effects of all our defined factors, modifying the classification layer built over BERT, employing other learning models, and studying 
different expansion ways to improve the tweets representation for the recognition task. 
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Appendix A. Full Results 

Detailed results, including out-domain training, in/out-domain training, cross-domain training, and training based on geo- 
proximity of events (Table 6). 
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Table 6 
Full results of different domain setups. Best F1 scores of non-target training setups are boldfaced. E refers to the number of training epochs, BS refers to the training batch size, and LR refers to the learning rate (Adam).  

Source Data Chennai FLD Houston FLD Louisiana FLD HRC Sandy ChCh EQK 

E BS LR P R F1 E BS LR P R F1 E BS LR P R F1 E BS LR P R F1 E BS LR P R F1 

Target 3 16 5e-5 0.86 0.86 0.87 3 16 5e-5 0.87 0.88 0.87 4 16 5e-3 0.94 0.91 0.92 4 16 5e-5 0.88 0.90 0.88 4 32 5e-5 0.82 0.83 0.82 

Out-domain general purpose training results. 

CoNLL.ner 4 16 5e-2 0.57 0.56 0.56 4 16 5e-2 0.59 0.53 0.56 4 16 5e-2 0.42 0.72 0.53 4 16 5e-2 0.49 0.73 0.59 4 16 5e-2 0.38 0.74 0.50 
BTC.ner 3 32 5e-5 0.66 0.67 0.66 3 32 5e-5 0.64 0.55 0.60 3 32 5e-5 0.46 0.74 0.56 3 32 5e-5 0.54 0.65 0.59 3 32 5e-5 0.40 0.75 0.52 
CoNLL.loc 3 16 5e-3 0.78 0.53 0.63 3 16 5e-3 0.84 0.48 0.61 3 16 5e-3 0.89 0.66 0.76 3 16 5e-3 0.69 0.61 0.66 3 16 5e-3 0.68 0.71 0.69 
BTC.loc 3 16 5e-5 0.83 0.66 0.72 3 16 5e-5 0.78 0.53 0.63 3 16 5e-5 0.86 0.73 0.79 3 16 5e-5 0.70 0.63 0.66 3 16 5e-5 0.65 0.74 0.69 

In & out-domain training results. 

DIS.others 3 16 5e-5 0.86 0.53 0.65 4 16 5e-5 0.83 0.65 0.731 4 16 5e-5 0.87 0.74 0.81 4 16 5e-5 0.72 0.74 0.72 4 16 5e-5 0.65 0.81 0.72 
Combined.joint 3 16 5e-5 0.85 0.61 0.71 4 16 5e-3 0.83 0.63 0.72 4 16 5e-3 0.89 0.77 0.82 2 16 5e-5 0.70 0.71 0.71 3 16 5e-3 0.64 0.78 0.70 
Combined.seq 2 16 5e-5 0.87 0.59 0.70 3 16 5e-5 0.85 0.67 0.75 4 32 5e-5 0.89 0.78 0.83 3 16 5e-5 0.73 0.73 0.74 4 16 5e-5 0.62 0.82 0.70 

Cross-domain training results. 

DIS.FLD.others 4 16 5e-5 0.82 0.64 0.72 3 32 5e-5 0.82 0.59 0.69 4 16 5e-5 0.80 0.78 0.79 4 16 5e-2 0.68 0.73 0.70 4 16 5e-2 0.58 0.76 0.66 
DIS.HRC.others 4 16 5e-5 0.81 0.35 0.49 4 16 5e-5 0.79 0.54 0.64 4 16 5e-5 0.90 0.66 0.77 – – – – – – 4 16 5e-5 0.68 0.70 0.69 
DIS.EQK.others 4 32 5e-5 0.80 0.33 0.46 4 32 5e-5 0.66 0.07 0.13 4 32 5e-5 0.57 0.02 0.03 4 32 5e-5 0.77 0.12 0.21 – – – – – – 

Geo-proximity-based training results. 

DIS_US.others – – – – – – 3 16 5e-5 0.80 0.62 0.70 4 32 5e-5 0.86 0.71 0.79 4 16 5e-5 0.71 0.72 0.71 – – – – – – 
DIS_IN.FLD – – – – – – 4 32 5e-5 0.85 0.38 0.52 4 32 5e-5 0.74 0.22 0.34 4 32 5e-5 0.56 0.42 0.45 – – – – – – 
DIS_NZ.EQK – – – – – – 4 16 5e-5 0.71 0.13 0.22 4 16 5e-5 0.63 0.04 0.07 4 16 5e-5 0.78 0.19 0.30 – – – – – –   
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Appendix B. Location distribution 

The location distribution of the English disaster-specific tweet datasets are depicted in Figs. 9–13). 

Fig. 9. The LMs distribution across training, development, and test data for Chennai Floods disaster dataset.   

Fig. 10. The LMs distribution across training, development, and test data for Houston Floods disaster dataset.   
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Fig. 11. The LMs distribution across training, development, and test data for Louisiana Floods disaster dataset.   

Fig. 12. The LMs distribution across training, development, and test data for Hurricane Sandy disaster dataset.   
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Fig. 13. The LMs distribution across training, development, and test data for Christchurch Earthquake disaster dataset.  
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