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Table 13: Comparison of ROUGE-1 F-scores for SCC (the
proposedmethodology) and its three variations on the same
tweet stream for each dataset, for each day
Datasets Day SCC SCC (uniform) SCC (proportion) SCC (whole)

25/04/2015 0.4117 0.2598 0.3058 0.3095
NEQuake 26/04/2015 0.3055 0.3033 0.2758 0.2809

27/04/2015 0.3853 0.3687 0.3613 0.3416
06/12/2014 0.3223 0.3108 0.3080 0.3176

Hagupit 07/12/2014 0.4124 0.3172 0.3046 0.3064
08/12/2014 0.3475 0.2849 0.2608 0.3475
07/09/2014 0.4524 0.4173 0.3886 0.4365

PFlood 08/09/2014 0.4145 0.3197 0.3529 0.3621

(ii). some of the overlapping information is present in more than
one class (e.g., information about airport, flight is present in both
‘infrastructure’ and ‘shelter’ class) and independent consideration
of the classes fails to capture this phenomenon. Note that SCC can
dynamically adjust the proportion of each class as per ‘real’ content
and hence provides superior summaries.

7 CONCLUSION
After interacting with several responders, we realized that
summarization of information in the tweets from various
perspectives and producing a summary focusing on sub-events
is a pressing need in the real world. Accordingly, we have
proposed a simple summarization approach, which can generate
summaries across various scenarios. Specifically, in this paper,
we have considered summaries : (i) of the overall situation, and
(ii) of different humanitarian classes. We proposed DEPSUB, a
sub-event identification algorithm. A crowdsourced evaluation
of DEPSUB showed it to be superior in terms of relevance,
usefulness as well as expressiveness. Summaries generated by
DEPSUB were rated to be in the top two among five competing
algorithms; this observation was confirmed by a quantitative
evaluation using ROUGE-1 scores. Our proposed summarization
algorithm, SCC - was rated to be superior in terms of diversity,
coverage and understandability. Highlighting of sub-events also
made the summary more understandable. SCC outperformed
baseline algorithms between 6-30%; specifically, we show that
the improvement resulted from the inclusion of sub-events. The
importance of the different humanitarian classes (infrastructure,
missing, shelter etc.) varies over days. SCC nicely captures and
adjusts to the changing need. To the best of our knowledge,
our work is the first to propose a comprehensive multi-faceted
summarization approach; the framework developed can be applied
to several important specialized situations (e.g. summarizing
missing people information, geography-centric information etc.) -
some of which will be our immediate future work.
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