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Abstract

Lack of global data inventories obstructs scientific model-
ing of and response to landslide hazards which are often-
times deadly and costly. To remedy this limitation, new ap-
proaches suggest solutions based on citizen science that re-
quires active participation. However, as a non-traditional data
source, social media has been increasingly used in many dis-
aster response and management studies in recent years. In-
spired by this trend, we propose to capitalize on social media
data to mine landslide-related information automatically with
the help of artificial intelligence (AI) techniques. Specifically,
we develop a state-of-the-art computer vision model to detect
landslides in social media image streams in real time. To that
end, we create a large landslide image dataset labeled by ex-
perts and conduct extensive model training experiments. The
experimental results indicate that the proposed model can be
deployed in an online fashion to support global landslide sus-
ceptibility maps and emergency response.

Introduction
Landslides occur all around the world and cause thousands
of deaths and billions of dollars in infrastructural damage
worldwide every year (Kjekstad and Highland 2009). How-
ever, landslide events are often under-reported and insuffi-
ciently documented due to their complex natural phenom-
ena governed by various intrinsic and external condition-
ing and triggering factors such as earthquakes and tropi-
cal storms, which are usually more conspicuous, and hence,
more widely reported (Lee and Jones 2004). Due to this
oversight and lack of global data inventories to study land-
slides, any attempt to quantify global landslide hazards and
the associated impacts is destined to be an underestima-
tion (Froude and Petley 2018).

In an attempt to tackle the challenge of building a global
landslide inventory, NASA launched a website1 in 2018 to
allow citizens to report about the regional landslides they
see in-person or online (Juang, Stanley, and Kirschbaum
2019). Following the same idea, researchers further devel-
oped other means such as mobile apps to collect citizen-
provided data (Kocaman and Gokceoglu 2019; Cieslik et al.
2019). These efforts also help address concerns about news

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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media sources’ reporting biases (Moeller 2006; Pennington
and Harrison 2013). However, this means the bulk of data
collection and interpretation still involves time consuming
work by specialists searching the Internet for news and so-
cial media reports, or directly engaging in communications
with those submitting information and then interpreting the
data received (Kocaman and Gokceoglu 2019; Juang, Stan-
ley, and Kirschbaum 2019; Pennington et al. 2015; Taylor
et al. 2015).

To alleviate the need for opt-in participation and manual
processing, we strive to develop a state-of-the-art AI model
that can automatically detect landslides2 in social media im-
age streams in real time. To achieve this goal, we first create
a large image dataset comprising more than 11,000 images
from various data sources annotated by domain experts. We
then exploit this dataset in a comprehensive experimenta-
tion searching for the optimal landslide model configuration.
This exploration reveals interesting insights about the model
training process. More importantly, the experimental results
show that the optimal landslide model achieves a promis-
ing performance on a held-out test set. Based on this model,
we envision a system that can contribute to harvesting of
global landslide data, and hence, facilitate further landslide
research. Furthermore, it can support global landslide sus-
ceptibility maps to provide situational awareness and im-
prove emergency response and decision making.

Related Work
The literature on landslide detection and mapping ap-
proaches mainly uses four types of data sources: (i) physi-
cal sensors, (ii) remote sensing, (iii) volunteers, and (iv) so-
cial networks. Sensor-based approaches rely on land char-
acteristics such as rainfall, altitude, soil type, and slope,
to detect landslides and develop models to predict future
events (Merghadi et al. 2020; Ramesh, Kumar, and Rangan
2009). While these approaches can be highly accurate for
sub-catchments to the referenced data area, their large-scale
deployment is extremely costly.

Earth observation data obtained using high-resolution
satellite imagery has been widely used for landslide de-

2By landslides, we refer to all downward and outward move-
ment of loosen slope materials such as landslip, debris flows, mud-
slides, rockfalls, earthflows, and other mass movements.



tection, mapping, and monitoring (Tofani et al. 2013). Re-
mote sensing techniques either use Synthetic Aperture Radar
(SAR) or optical imagery to perform landslide detection
as an image classification, segmentation, object detection,
or change detection task (Mohan et al. 2021; Cheng et al.
2013). While remote sensing through satellites can be useful
to monitor landslides globally, their deployment can prove
costly and time-consuming. Moreover, satellite data is sus-
ceptible to noise such as clouds.

A few studies demonstrate the use of Volunteered Ge-
ographical Information (VGI) as an alternative method to
detect landslides (Kocaman and Gokceoglu 2019; Can, Ko-
caman, and Gokceoglu 2019, 2020). These studies assume
active participation of volunteers to collect landslide data
where the volunteers opt in to use a mobile app to pro-
vide information such as photos, time of occurrence, damage
description and other observations about a landslide event.
On the contrary, our work aims to capitalize on massive
social media data without any active participation require-
ment and with better scalability. In addition, we construct a
much larger dataset to train deep learning models and per-
form more extensive experimental evaluations.

The use of social media data for landslide detection has
not been explored extensively. To the best of our knowl-
edge, no prior work has explored the use of social media
imagery to detect landslides. The most relevant work re-
ported in (Musaev, Wang, and Pu 2014; Musaev et al. 2017)
combines social media text data and physical sensors to de-
tect landslides. The authors used textual messages collected
through a set of landslide-related keywords on Twitter, Insta-
gram, and YouTube, which were then combined with sensor
data about seismic activity and rainfall to train a machine
learning classifier that can identify landslide incidents. In
this study, we focus on analyzing social media images which
can provide more detailed information about the impact of
the landslide event. To that end, our work can be considered
as complementary to prior art.

Dataset
To train models that can detect landslides in images, we
curated a large image dataset from multiple sources with
different characteristics. Some images were obtained from
the Web using Google Image search with keywords such
as landslide, landslip, earth slip, mudslide, rockslide, rock
fall whereas some images were collected from Twitter using
similar landslide-related hashtags. Additional images were
obtained from the British Geological Survey archives. The
images obtained from social media or the Web are usually
noisy and can include duplicates. Therefore, the collected
data is manually labeled by three landslide experts who are
also co-authors of this study. Since the AI task at hand is
“given an image, recognize landslides” (i.e., no other exter-
nal information or expert knowledge is available to the AI
model), the experts were instructed to keep this computer-
vision perspective in mind and label only the most evident
cases as “landslide” images (i.e., the images where the land-
slide is the main theme exhibiting substantial visual cues for
the computer vision model to learn from). In this context,
the BGS images were also included in the labeling process

Training Validation Test Total

Google 4,398 628 1,258 6,284
Twitter 807 115 231 1,153
BGS 3,010 430 860 4,300

Total 8,215 1,173 2,349 11,737

Table 1: Distribution of images across data sources.

Training Validation Test Total

Landslide 1,883 271 536 2,690
Not-landslide 6,332 902 1,813 9,047

Total 8,215 1,173 2,349 11,737

Table 2: Data splits (70:10:20).

to maintain label consistency across the dataset. On the other
hand, since our ultimate goal is to develop a system that
will continuously monitor the noisy social media streams
to detect landslide events in real time, we retained negative
(i.e., not-landslide) images that illustrate completely irrele-
vant cases (e.g., cartoons, advertisements, selfies) as well as
difficult scenarios such as post-disaster images from earth-
quakes and floods in addition to other natural scenes with-
out landslides in the final dataset. Despite the inherent dif-
ficulty of the task, the experts achieved an overall Fleiss’
Kappa score of 0.58 (Fleiss 1971), which indicates an almost
substantial inter-annotator agreement. The final dataset con-
tains 11,737 images. Some example images are shown in
Figure 1. The distribution of images across data sources is
summarized in Table 1 and their breakdown into data splits
are presented in Table 2. As suggested by Table 2, only about
23% of the images are categorized as “landslide”.

Landslide Model
Many computer vision tasks have greatly benefited from the
recent advances in deep learning. The features learned in
deep convolutional neural networks (CNNs) are proven to
be transferable and quite effective when used in other vi-
sual recognition tasks (Donahue et al. 2014; Sermanet et al.
2014; Zeiler and Fergus 2014; Girshick et al. 2014; Oquab
et al. 2014), particularly when training samples are limited
and learning a successful deep model is not feasible. Con-
sidering we also have limited training examples for data-
hungry deep CNNs, we follow a transfer learning approach
to adapt the features and parameters of the network from the
broad domain (i.e., large-scale image classification) to the
specific one (i.e., landslide classification). To that end, we
conducted extensive experiments where we trained several
different deep CNN architectures using different optimizers,
learning rates, weight decays, and class balancing strategies.
CNN Architecture. The type of CNN architecture (arch)
plays a significant role on the performance of the re-
sulting model depending on the available data size and
problem characteristics. Therefore, we explored a repre-
sentative sample of well-known CNN architectures in our
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Figure 1: Example images from the dataset.

experiments including VGG16 (Simonyan and Zisserman
2015), ResNet18, ResNet50, ResNet101 (He et al. 2016),
DenseNet (Huang et al. 2017), InceptionNet (Szegedy et al.
2016), and EfficientNet (Tan and Le 2019), among others.
Optimizer. An optimizer (opt) is an algorithm or method
that changes the attributes of a neural network (e.g., weights
and learning rate) in order to reduce the optimization loss
and to increase the desired performance metric (e.g., accu-
racy). In this study, we experimented with the most popu-
lar optimizers, i.e., Stochastic Gradient Descent (SGD) and
Adam (Kingma and Ba 2015) with decoupled weight decay
regularization (Loshchilov and Hutter 2019).
Learning rate. Learning rate (lr) controls how quickly the
model is adapted to the problem. Using a too large learn-
ing rate can cause the model to converge too quickly to a
suboptimal solution whereas a too small learning rate can
cause the process to get stuck. Since learning rate is one of
the most important hyperparameters and setting it correctly
is critical for real-world applications, we performed a grid
search over a range of values typically covered in the litera-
ture (i.e., {10−2, 10−3, 10−4, 10−5, 10−6}).
Weight decay. Weight decay (wd) controls the regulariza-
tion of the model weights, which in turn, helps to avoid
overfitting of a deep neural network on the training data
and improve the performance of the model on the unseen
data (i.e., better generalization ability). In light of this, we
experimented with a range of weight decay values (i.e.,
{10−2, 10−3, 10−4, 10−5}).
Class balancing. An imbalanced dataset can bias the predic-
tion model towards the dominant class (i.e., not-landslide)
and lead to poor performance on the minority class (i.e.,
landslide), which would not be ideal for our application.
There are many approaches to tackle this problem, rang-

ing from generating synthetic data to using specialized algo-
rithms and loss functions. In this study, we explored one of
the basic approaches, i.e., data resampling, where we over-
sampled images from the landslide class (i.e., sampling with
replacement) to create a balanced training set.
Other training details. We ran all our experiments on
Nvidia Tesla P100 GPUs with 16GB memory using PyTorch
library.3 We adjusted the batch size according to each CNN
architecture in order to maximize GPU memory utilization.
We used a fixed step size of 50 epochs in the learning rate
scheduler of the SGD optimizer and a fixed patience of 50
epochs in the ‘ReduceLROnPlateau’ scheduler of the Adam
optimizer, both with a factor of 0.1. All of the models were
initialized using the weights pretrained on ImageNet (Rus-
sakovsky et al. 2015) and trained for a total of 200 epochs.
Consequently, we trained a total of 560 CNN models in our
quest for the best model configuration.

Results
Due to limited space, Table 3 presents results only for the
best performing 10 model configurations ranked based on
F1-scores obtained on the validation set. The top-performing
model configuration (i.e., arch: ResNet50, opt: Adam, lr:
10−4, wd: 10−3, no class balancing) achieves an F1-score
of 0.805 and an overall accuracy of 0.913, which is deemed
plausible performance by the landslide specialists.

Nevertheless, we investigate the full table of results for
interesting patterns and identify the following insights:

• When everything but the optimizer is kept fixed, the
models trained with the Adam optimizer outperforms the
models trained with the SGD optimizer (175 vs. 104).

3https://pytorch.org/



Optimizer Architecture Class
Balancing

Learning
Rate

Weight
Decay Accuracy Precision Recall F1

Adam ResNet50 No 10−4 10−3 0.913 0.834 0.779 0.805
Adam ResNet50 Yes 10−4 10−5 0.912 0.868 0.731 0.794
SGD ResNet50 Yes 10−2 10−4 0.907 0.816 0.771 0.793
SGD EfficientNet No 10−2 10−4 0.904 0.793 0.790 0.791
SGD ResNet50 No 10−3 10−3 0.906 0.821 0.760 0.789
Adam ResNet50 No 10−4 10−4 0.906 0.826 0.753 0.788
Adam ResNet50 Yes 10−4 10−2 0.907 0.835 0.745 0.788
SGD ResNet101 No 10−3 10−2 0.904 0.806 0.768 0.786
SGD DenseNet No 10−2 10−4 0.905 0.819 0.753 0.785
Adam EfficientNet No 10−3 10−4 0.905 0.819 0.753 0.785

Table 3: Top-performing 10 configurations based on F1-score on the validation set.

Architecture mean(F1) std(F1) Avg. Rank
ResNet50 0.6308 0.2262 2.70
DenseNet 0.6256 0.2131 3.19
ResNet101 0.6259 0.2146 3.28
VGG16 0.6114 0.2293 3.74
EfficientNet 0.6029 0.2089 3.90
ResNet18 0.6003 0.2176 4.48
InceptionNet 0.4001 0.1933 6.73

Table 4: Performance comparison of CNN architectures

• Despite the fact that top-performing model is trained
without a class balancing strategy, the overall trend in-
dicates that, while everything else is the same, the mod-
els trained with class balancing yield better performance
than those trained without class balancing (178 vs. 95).

• ResNet50 architecture tops the rankings among all CNN
architectures by achieving the best average ranking as
well as the highest mean F1-score according to Table 4.
However, the overall difference between architectures do
not seem to be significant except for InceptionNet which
yields a significantly poor performance than others.

• The impact of the learning rate on model performance
shows opposite trends for different optimizers. As per Ta-
ble 5, smaller learning rates (e.g., {10−6, 10−5, 10−4})
seem to work better with the Adam optimizer whereas
larger learning rates (e.g., {10−2, 10−3}) seem to work
better with the SGD optimizer.

• As expected, the value of the weight decay also impacts
the overall performance significantly (in particular, for
the Adam optimizer). A large weight decay (e.g., 10−2)
hurts the overall performance which tends to improve as
the weight decay takes on smaller values (see Table 6).

To illustrate the success of the transfer learning approach
employed in this study, we created t-SNE (Van der Maaten
and Hinton 2008) visualizations of the feature embeddings
before and after the training of the best-performing model.
As can be seen in Figure 2, the original ResNet50 model
pretrained on ImageNet cannot distinguish landslide images

Adam Learning Rate SGD
(mean) (std) (mean) (std)
0.6843 0.0904 10−6 0.2168 0.2102
0.7001 0.0890 10−5 0.4292 0.2339
0.7203 0.0954 10−4 0.6600 0.1130
0.6298 0.1382 10−3 0.7185 0.0778
0.3791 0.2525 10−2 0.7145 0.0858

Table 5: Effect of the learning rate on overall performance

Adam Weight Decay SGD
(mean) (std) (mean) (std)
0.6618 0.1448 10−5 0.5582 0.2488
0.6573 0.1468 10−4 0.5570 0.2524
0.6319 0.1646 10−3 0.5569 0.2495
0.5400 0.2657 10−2 0.5192 0.2598

Table 6: Effect of the weight decay on overall performance

from not-landslide images neither in the training set (Fig-
ure 2a) nor in the validation set (Figure 2b). However, after
finetuning the model on the target landslide dataset, the re-
sulting feature embeddings show almost perfect separation
of the classes in the training set (Figure 2c) and a reasonably
well separation in the validation set (Figure 2d).

When applied on the held-out test set, the best-performing
model achieves an F1-score of 0.701 and an accuracy of
0.870 as opposed to the F1 and accuracy scores of 0.805
and 0.913, respectively, on the validation set (Table 7). Al-
though the difference in accuracy is relatively small, the dif-
ference in F1 is considerably large due to significant drops
in precision and recall scores of the model on the test set.
This phenomenon can be explained by the more-than-twice
increase in the false positive (128 vs. 42) and false negative
(178 vs. 60) predictions of the model on the test set as shown
in Table 8.

To have a better understanding of the inner workings of
the model, we investigated class activation maps (Zhou et al.



(a) Training set: ResNet50 trained on ImageNet (b) Validation set: ResNet50 trained on ImageNet

(c) Training set: ResNet50 finetuned on our dataset (d) Validation set: ResNet50 finetuned on our dataset

Figure 2: Visualization of the feature embeddings before/after model finetuning

Set Accuracy Precision Recall F1
Validation 0.913 0.834 0.779 0.805

Test 0.870 0.737 0.668 0.701

Table 7: Performance comparison of the best model on vali-
dation and test sets.

2016), which highlight the discriminative image regions that
the CNN model pays attention to decide whether an image
belongs to landslide or not-landslide class. Figure 3 demon-
strates example visualizations for all four cases, i.e., true
positives, true negatives, false positives, and false negatives.
The visualizations for the true positive predictions indicate
that the model successfully localizes the landslide regions
(e.g., rockfalls, earthslip, etc.) in the images. Similarly for
the true negative predictions, the model focuses on areas that
do not show any landslide cues, successfully avoiding tricky
conditions such as muddy roads, wet surfaces, and natural
rocky areas on a beach. However, in both false positive and
false negative predictions, we observe that the errors occur
mainly because the model fails to localize its attention on
a particular region in the image, or is tricked by the image
regions that are reminiscent of landslide scenes.

Prediction
Ground Truth Landslide Not-landslide

V (10%) Landslide 211 60
Not-landslide 42 860

T (20%) Landslide 358 178
Not-landslide 128 1,685

Table 8: Confusion matrices for the validation and test sets

Path to Deployment
We envision a system that continuously monitors social me-
dia (i.e., Twitter) for general landslide-related content and
deploys our landslide classification model to identify and
retain the most relevant information. The planned system
will follow a design approach similar to the one presented in
(Alam, Imran, and Ofli 2017; Alam, Ofli, and Imran 2018)
without the human-in-the-loop aspect (for now). Specifi-
cally, there will be a Tweet Collector module that will collect
live tweets from the Twitter Streaming API 4 that matches
landslide-related keywords and hashtags in multiple lan-
guages. This module will be followed by an Image Collector
module that will extract image URLs from the tweets (if any)
and download images. Then, the Image Classifier module

4https://developer.twitter.com/en/docs/tutorials/consuming-
streaming-data
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Figure 3: Class activation map visualizations of the model predictions on the test set.

will run the downloaded images through our landslide model
to tag each image as landslide or not-landslide. In parallel,
the Geolocation Inference module will use tweet metadata
to geolocate the images following the approach presented
in (Qazi, Imran, and Ofli 2020). Eventually, all the results
will be stored in a database by the Persister module, which
will then be used by the Visualizer Module to create a dash-
board and/or a map representation of the detection results.
With this plan, we hope to translate this fruitful collabora-
tion between researchers and practitioners into a solid out-
come that can benefit the landslide community as well as the
government agencies and humanitarian organizations.

Conclusion
In this study, we aimed to develop a model that can auto-
matically detect landslides in social media image streams.
For this purpose, we created a large image collection from
multiple sources with different characteristics to ensure data
diversity. Then, the collected images were assessed by three
experts to attain high quality labels with almost substantial
inter-annotator agreement. At the heart of this study lied an
extensive search for the optimal landslide model configu-
ration with various CNN architectures, network optimizers,
learning rates, weight decays, and class balancing strategies.
We provided several insights about the impact of each op-
timization dimension on the overall performance. The best-
performing model achieved high performance in terms of
accuracy and F1 scores, which can be deemed sufficient for
the purpose. Furthermore, presented error analyses pointed
at potential improvements for future work. Finally, we de-
scribed a road map to deploy the proposed landslide model
in an online, real-time system.
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