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ABSTRACT 
The use of social media platforms such as Twitter by affected people during crises is considered 
a vital source of information for crisis response. However, rapid crisis response requires real-
time analysis of online information. When a disaster happens, among other data processing 
techniques, supervised machine learning can help classify online information in real-time. 
However, scarcity of labeled data causes poor performance in machine training.  Often labeled 
data from past event is available. Can past labeled data be reused to train classifiers? We study 
the usefulness of labeled data of past events. We observe the performance of our classifiers 
trained using different combinations of training sets obtained from past disasters. Moreover, we 
propose two approaches (target labeling and active learning) to boost classification performance 
of a learning scheme. We perform extensive experimentation on real crisis datasets and show the 
utility of past-labeled data to train machine learning classifiers to process sudden-onset crisis-
related data in real-time.  

Keywords: Social media, tweets classification, domain adaptation, disaster response 
1. INTRODUCTION 
In the last few years, the use of social media platforms during disasters and emergencies has 
increased. In particular, microblogging platforms such as Twitter provide active communication 
channels during the onset of mass convergence events such as natural disasters (Palen et al., 
2009; Hughes et al., 2009; Starbird et al., 2010; Vieweg et al., 2010). Studies show that Twitter 
has been used to spread news about casualties and damage, donation offers and requests, and 
alerts, including multimedia information such as videos and photos during crises (Cameron et al., 
2012; Imran et al., 2013a; Qu et al., 2011). Many studies show the significance of this online 
information (Vieweg et al., 2014; Sakaki et al., 2010; Neubig et al., 2011) for crisis response and 
management. Moreover, it has been observed that these messages are usually communicated 
more quickly than disaster information shared via traditional channels such as news websites, 
etc. For instance, the first tweet to report on the 2013 Westgate Mall attack was posted within a 
minute of the initial onslaught.1 Given the importance of crisis-related messages for time-critical 
situational awareness, disaster-affected communities and professional responders may benefit 
from using an automatic system to extract relevant information from social media.  

                                                
1 http://www.ihub.co.ke/blog/2013/10/how-useful-is-a-tweet-a-review-of-the-first-tweets-of-the-westgate-attack 



 
 

Among other benefits that encourage responding organizations to use social media data is the 
timeliness of information when there are no other information sources available, especially in the 
beginning of a crisis situation (Tapia et al. 2013). For this reason, to enable rapid crisis response, 
real-time insights of an ongoing situation play an important role for emergency responders. To 
identify informational, actionable, and tactical informative pieces from a growing stack of social 
media information and to inform decision-making processes as early as possible, messages need 
to be processed as soon as they arrive. Given the large volume of messages, we need to classify 
them. That is, we need to put them in different informational categories such as food needs, 
supplies requests; financial support requests, logistics, etc. so that disaster-response professionals 
can quickly examine each bin to identity urgent needs.  

Different approaches can be employed to filter and classify these online messages. For instance, 
many humanitarian organizations use the Digital Humanitarian Network (DHN)2 of volunteers to 
analyze messages one by one to find useful information for disaster response.  However, given 
the amount of information that needs to be processed, and the scarcity of volunteers, we would 
ideally like the messages to be categorized automatically, and volunteers to use their time to 
perform higher-order tasks. Despite advances in natural language processing, full automation is 
still not feasible.  
In this paper we propose to use a hybrid approach in which both humans and machines work 
together to perform complex tasks (e.g. classification of tweets). Among other automatic 
processing techniques, most automatic classifiers that achieve high accuracy in solving different 
classification tasks are based on supervised machine learning techniques where humans provide 
a set of training samples consisting of positive and negative examples for each classification 
category. For instance, a semi-automated system having similar characteristics to DHN is AIDR 
(Artificial Intelligence for Disaster Response) (Imran et al., 2014).  

The AIDR platform collects event-specific data (using user-defined queries) from the Twitter 
streaming API, and uses supervised machine learning techniques to classify messages into user-
defined categories or bins. AIDR is trained by humans which then automatically process and 
classify messages at high-speed using a supervised classification technique. AIDR or any other 
similar system that performs automatic classification requires human-labeled example examples 
pertaining to each category. Scarcity of such human-labeled data results in poorer classification 
models or it delays the machine training process. Gathering human-labeled data for training 
classifiers is a hard problem because human annotators find it a boring and laborious task, 
especially if they are doing it in large numbers. Moreover, the task becomes more challenging 
under time-critical situations where the need to make-sense of large data is in high-demand. 
However, what if we use human-labeled data from past events. For example, AIDR has been 
used to collect data from similar events in the past and has annotated data that can be used, if 
they are found useful. If we can reuse the existing annotations from AIDR, then we can also 
improve the accuracy significantly resulting in a much better model. 

In this work, we utilize labels from past crises to train machines so that they can classify 
messages from new crises. However, the problem is when multiple such past crises exist, we 
need to choose which ones are useful and which are not. The traditional machine learning 
premise is that we should use as much relevant training data as we have.  However, should we 
use labeled messages from different languages (e.g. data from two earthquakes events in 
                                                
2 http://digitalhumanitarians.com/ 



 
 

different languages) from the same event type to train?  Are all the datasets from the same event, 
for example an earthquake, relevant for the next earthquake?  Because the different datasets 
originate from different parts of the world, they use different languages or mix of languages, etc. 
Datasets for a similar event, e.g., earthquake may not be useful from one event to another. We 
wanted to examine the datasets to see if existing datasets and their tagged examples helps. 
Provided there exists crisis-related collections along with human-tagged data (e.g. in case of 
AIDR), we specifically examine the following questions empirically. 1) Can we use the past data 
to build machine learning models?  2) Will using the past data improve the models?  3) Should 
we use all the labeled data?   
To get answers to the above questions, we train classifiers using different combinations of 
existing data and examine on unseen test data how they perform in order to address these 
questions. We show that in most cases data from the same domain are very useful. A few 
exceptions exist. For example, Italian tweets improved the classification performance of tweets 
from Spanish-speaking countries but not English-speaking countries3.  However, beyond 
language, there could potentially be other variations due to which we need to be careful in 
choosing existing data for training. For example, we believe that variations in dialects, 
vernaculars, season, geography, urban/rural divide, development status of countries etc. could 
potentially render the datasets and the discussions from the same type of event to be different.   
To the best of our knowledge, our work is the first to use existing tagged information in 
conjunction with information tagged for the specific event to train classifiers at this scale, and 
show that using the old data helps improve performance in most cases. Because our evaluation 
found a few anomalous cases, we recommend that before deployment, we need to validate the 
impact of the additional datasets on the performance of the classifier using a small test set before 
including the training data to create the classification model. To achieve maximum performance, 
we should not add the training datasets that cause the classifiers to lose accuracy during this 
validation step. 
Having established that the labeled data from same domains is generally useful, next we ask the 
following question. Can we use data from one domain, e.g., earthquake, to train models for 
another domain, e.g., floods?  In computer science, this is a well-known problem of domain 
adaptation (Daume et al., 2006). In supervised classification setting, one of the basic assumptions 
in learning new classifiers is that the training and test sets instances are drawn from the same 
data distribution. If the training and test sets differ substantially then it causes problems for the 
learning scheme to generalize. However, to deal with the inherited problem of labels scarcity, we 
aim to investigate how useful the labels of past crisis events can be for classifying a target crisis.  

Moreover, once we learn a best setting for a given event type (e.g. best performing models using 
past data), we aim to improve the classification accuracies of our baseline models using different 
approaches. Specifically, in this paper, we try two approaches as follows. First, based on our 
findings that event-specific labeled data always help achieve better performance, we aim to 
predict labels for target events unlabeled data and then include the items with high classification 
accuracy in the training set of the model. The second approach we use is to employ the active 
learning technique to select items from a target event for which the learner’s confidence is low 
and then ask human annotators for their labels. This approach helps classifiers learn complex 
                                                
3 This observation is a fascinating example of big data science. This result seems to point out that certain languages 
are closer to one language than others.  And, that there is value in cross-language training of classification models. 



 
 

classes using fewer numbers of labels (i.e. cost reduction). Results from both experiments show 
improvements in classifiers performance. 
The rest of the paper is organized as follows. In the next section, we describe real-time 
classification approach which is an application area of our current work. Datasets details and 
then experimental setup sections provide details regarding what datasets we use and our 
experimental plan. We discuss results in the discussion section and elaborate related studies in 
the related work section. Finally, the paper is concluded in the conclusions section.  

2. REAL-TIME CLASSIFICATION APPROACH 
To be useful and actionable for emergency managers, information must be delivered to them in a 
timely fashion during a crisis situation (Tapia et al. 2013). In the case of social media data, this 
timeliness is achieved by using a real-time stream-processing paradigm (e.g. Imran et al., 2013b), 
in which data items are processed as soon as they arrive. Stream processing is different from 
batch processing, in which an archive with the information to be analyzed preexists and the 
processing is performed in a retrospective way.  

 
Figure 1: Pipeline for the classification of messages in real-time using supervised machine learning setting 
in conjunction with past events data 

Different data processing techniques can be used for real-time analysis of data streams (Imran et 
al., 2013b). In this paper we use supervised classification techniques. Figure 1 shows the 
proposed approach, which is an extension of the AIDR approach, in the supervised machine 
learning setting. First of all, the data is collected from a number of social media sources using the 
real-time data collector component, followed by data pre-processing component, which performs 
required pre-processing steps for training machine learning classifiers. In this stream processing 
setting, we have two core components called data crowsourcing and machine learner. Data 
crowdsourcing responsible to get fresh labeled examples from human, whereas, the machine 
learner component uses those labeled examples to train machine learning classifiers. 
Specifically, humans train machines by providing event-specific labeled examples. However, 
human labeling cannot scale to the data volumes typical of large-scale crises, and is usually done 
on a sample of the input data. Whereas, automatic labeling by machines can overcome this issue, 
for example, by using human labeled data to train a supervised classification system. In this 
hybrid approach event-specific training data provided by humans is used to train and re-train an 
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automatic classification system (e.g. Imran et al., 2014). Availability of the human labeled 
messages is a core aspect in this processing pipeline. However, as described earlier during the 
sudden onset of a crisis situation, especially in the early hours when no other means of 
information exist, scarcity of human-labeled data introduces a high latency to process and 
produce useful results for crisis responders. 
To overcome this bottleneck, next we study the usefulness of past-labeled data available from 
previous crises. We perform extensive experimentations on a number of real crisis datasets 
(described next) and learn how labeled data from past crisis events can be utilized to process a 
new target crisis.  

3. PROBLEM FORMULATION AND CRISIS DATASETS 
In this section, we first formally define our problem and classification setting and then describe 
an experimental framework. 

3.1 Problem formulation 
We consider this as multi-class classification problem in different domain adaptation settings, 
which we formally define as follows: 

Given a domain 𝐷, which consists of two parts 𝑋,𝑃 𝑋 , where 𝑋 represents the feature space 
and 𝑃 𝑋  represents marginal probability distribution. Now, given a training data set (𝑋! ,𝑌!), 
where 𝑥!  ∈  𝑋 is the 𝑖!! feature vector and 𝑦!  ∈  1,… ,𝐾  class labels, in the multi-class 
classification problem, the aim is to learn a predictive function 𝑓 .  using the feature vectors and 
labeled pairs {𝑋! ,𝑌!}. 
From the above definition, we represent 𝐷! as the source domain data where 
𝐷! = { 𝑥!!,𝑦!! ,… , 𝑥!",𝑦!" } where 𝑥!" ∈  𝑋! is the 𝑖!! instance of 𝐷! and 𝑦!" ∈  𝑌! is the 
corresponding class label for 𝑥!". Similarly, we represent 𝐷! as the target domain data where 
𝐷! = { 𝑥!!,𝑦!! ,… , 𝑥!",𝑦!" } where 𝑥!" ∈  𝑋! is the 𝑖!! instance of 𝐷! and 𝑦!" ∈  𝑌! is the 
corresponding class label for 𝑥!". Now given multiple source domains 𝐷! and a target domain 
𝐷!, in this work we aim to learn a predictive function 𝑓! .  for the target domain data 
classification by using the information from both 𝐷! and 𝐷! source and target domains 
respectively.  

In this work, we always consider 𝐷! ≠ 𝐷!, but 𝑇! = 𝑇! (i.e. source and target domains tasks are 
same). When both source and target events belong to the same crisis type (e.g. both 𝐷! and 𝐷! 
are earthquake events), we represent them as an in-domain case. And, we use cross-domain to 
represent when both source and target events have different crisis types (e.g., 𝐷! comes from an 
earthquake event and 𝐷! comes from a flood event). 

3.2 Datasets 
We use a combination of data collected by the AIDR platform and from the CrisisLexT26 
dataset (Olteanu et al. 2015). Both datasets correspond to social media messages from Twitter 
posted during different crises that took place in 2012, 2013, and 2015. We selected 11 crises of 
two types: earthquake (5 crises) and floods (6 crises). Table 1 lists the crises along with other 
salient details. AIDR uses volunteers during the onset of a crisis situation to label crisis-related 



 
 

messages. However, CrisisLex used paid crowdsourcing platforms for human labeling. In the 
datasets, each crisis corresponds to 800+ tweets annotated using the “Information Type” 
annotation scheme, which classifies tweets into the following categories (each tweet assigned 
only one of the following categories): 

• Affected individuals: deaths, injuries, missing, found, or displaced people, and/or 
personal updates. 

• Infrastructure and utilities: buildings, roads, utilities/services that are damaged, 
interrupted, restored or operational. 

• Donations and volunteering: needs, requests, or offers of money, blood, shelter, 
supplies, and/or services by volunteers or professionals. 

• Caution and advice: warnings issued or lifted, guidance and tips. 
• Sympathy and emotional support: thoughts, prayers, gratitude, sadness, etc.  
• Other useful information: not covered by any of the above categories. 
•  

Crisis name (short name) Language Date happened Crisis type # of labels 
Italy earthquake (ITEQ) IT + ENG 20-May-2012 Earthquake 911 
Costa Rica earthquake (CREQ) ES + ENG 05-Sep-2012 Earthquake 866 
Guatemala earthquake (GUEQ) ES + ENG 07-Nov-2012 Earthquake 905 
Bohol earthquake (BOEQ) ENG 12-Oct-2013 Earthquake 943 
Nepal earthquake (NEEQ) ENG 25-Apr-2015 Earthquake 2,812 
Philippines floods (PHFL) ENG 01-Aug-2012 Floods 874 
Queensland floods (QUFL) ENG 29-Jan-2013 Floods 892 
Alberta floods (ABFL) ENG 19-Jun-2013 Floods 913 
Manila floods (MNFL) ENG 20-Aug-2013 Floods 808 
Colorado floods (CLFL) ENG 09-Sep-2013 Floods 901 
Sardinia floods (SDFL) IT + ENG 17-Nov-2013 Floods 910 

Table 1. Crises datasets details, their types, and number of human tagged messages 

3.3 Preprocessing 
Preprocessing of the datasets is performed before running the experiments. Each crisis dataset is 
divided into two sets. The first set comprised of 70% of the messages (i.e. training set) and the 
second comprised of 30% of the messages (i.e. test set). For the both training and the test sets, 
we remove stop-words, URLs, and user mentions from the messages. We use two types of 
features uni-grams (one word) and bi-grams (two consecutive words). Feature selection is 
performed using the information gain feature selection method and top 1,000 features are 
selected for the training purposes. We use Random Forest, a well-known learning scheme (Liaw 
et al., 2002), as our classification algorithm. Results of all the experiments are presented in four 
well-known measures i.e. Precision, Recall, F-measure (i.e., weighted average F1), and AUC 



 
 

(i.e. Area Under ROC curve).4 

4. EXPERIMENTAL FRAMEWORK 
To determine whether labeled data from past crises can be helpful in the classification of target 
crisis messages, we perform extensive experimentation.  
In this paper, we always perform training on labeled data from one or more source events, and 
the trained models are always evaluated/tested on one target event. The evaluation set remains 
same for all types of experiments (more details below) for a given crisis event. The evaluation of 
models, especially in the domain adaptation setting, should be performed on a fixed test set, 
which is a more demanding evaluation task as compared to other types of evaluations such as 
cross-validation using n-folds. Hence, for an event under consideration, we fix 30% of its labeled 
data as test set for evaluations. 

4.1 Model Performance for Event and In-domain settings 
First, we perform a series of experiments to determine how models trained on same events 
perform as compared to when they are used to classify other events. For example, a model 
trained and tested on Nepal earthquake data vs. trained on Nepal and tested on Costa Rica 
earthquake.  

4.2 Model Adaptation in In-domain and Cross-domain Settings 
To test the performance of classifiers trained using labeled data from one event (source crisis) 
and test on another event (target crisis), we perform domain adaptation using single-source 
experiments. In this setting, we use datasets from both in-domain and cross-domains. The in-
domain setting represents both train and test sets from same crisis type (e.g. earthquake). The 
cross-domain setting represents train and test from different crisis types.  
In-domain (earthquakes): First, we take earthquake datasets in their chronological order and use 
the event under investigation as target event and its preceding crises as source events. Although, 
considering chronological order of the events does not have any direct effect on machine 
learning or natural language processing techniques, we just want to mimic real-world setting. We 
always train classifiers on the source event data and test on the target event data. In Table 2, all 
the rows with experiment type “SS” (i.e., single-source) represent the results obtained using the 
single-source experiments. For instance, the first SS row in Table 2 shows the results of training 
on ITEQ 100%  (i.e. all Italy earthquake labels) and testing on CREQ 30% (i.e. 30% of Costa 
Rica earthquake labels). The Italy earthquake event happened before the Costa Rica earthquake. 
And the reason why Italy EQ is not tested because we don’t have any preceding event to this 
one. 
In-domain (floods): Next, the floods datasets are tested. As before, the current crisis data is 
considered as the target event and its preceding crises the source event(s). As always, we train 
classifiers on source event data and test on target event data. Table 3 shows the results of in-
domain (floods) experiments in rows with experiment type as “SS”. 

                                                
4 https://en.wikipedia.org/wiki/Receiver_operating_characteristic 



 
 

Cross-domain (earthquakes and floods): In this setting, we performed cross-domain 
experiments i.e. both source and target datasets are taken from different domains. In these 
experiments, the aim is to find out if incorporating training examples from other crisis types can 
increase classification accuracy or not. Table 4 shows the results of cross-domain experiments 
for some selected events. 

4.3 Model Adaptation Using Multiple Sources (in-domain) 
To test whether incorporating more training examples from more than one similar past crises 
increases the classification accuracy or not, we perform the following two types of experiments. 
1. Multiple sources without target event data 
Obtaining labeled data during an ongoing event, especially in the early hours, is challenging and 
often not possible. In this experiment setting, we use past data only without any labeled data 
from a target event. One basic motivation behind this setting is the fact that more training 
examples tend to boost classifier’s capability to generalize concepts better. To determine whether 
incorporating labels from all similar past crises is useful or not, in this experiment, we take all 
preceding datasets as our source events and used as training set. New models are trained using 
this training set. The evaluation of the newly generated models is performed on the test set of a 
target event. 
Table 2 with rows having experiment type “MS” (i.e. multi-source) shows the results of all the 
earthquake events. Table 3 shows the results of all the floods events (rows with experiment type 
“MS”). 
2. Multiple sources with target event data 
Given the fact that classifiers generalize better if both training and test instances are drawn from 
the same data distribution. In this setting, we include training examples from the target event. For 
this purpose, we take labels (70%) from the target event to determine the boost in classification 
accuracy. Table 2 shows the results of earthquake events and Table 3 shows the results of floods 
events, both with rows having experiment type as “MSWT” (i.e. multi-source with target event). 

4.4. Model Adaptation in Cross-language and other Cases 
In supervised classification systems that make use of textual features such as uni-grams, bi-
grams, or part-of-speech tags, etc., the language of the underlying data from which the features 
are drawn play an important role. Two events of same type (e.g. earthquake) happened in two 
different countries could be effectively used to train classifiers, if the language of the both 
countries is similar (e.g., Italian and Spanish). To determine the usefulness of such cases, in this 
setting, we train and test classifiers in which both source and target events are from countries 
where the lexical similarity between their spoken languages is high. For instance, according to 
Wikipedia5 the lexical similarity between Spanish and Italian language is almost 82%.  
Rows with experiment type “SC” (i.e. special case) in Table 2 and Table 3 show the results of 
this analysis. For instance, in case of the Bohol Earthquake (BOEQ), we ran three additional 
tests. In the first test (SC1), we dropped ITEQ as it was present in the BOEQ MS case in which 
we observe a drop in the accuracy (e.g. see AUC). 
                                                
5 https://en.wikipedia.org/wiki/Lexical_similarity 



 
 

However, after dropping the ITEQ, the classification accuracy increases (see SC1 row of BOEQ 
in Table 2). As the ITEQ set contains messages from both English and Italian languages, 
probably this causes the drop of AUC in the first test and the increase in AUC in the second test. 
To validate this observation, we manually analyzed all 912 ITEQ tweets to assign language tags 
(English or Italian). The result of the language tagging found that 90% of the tweets in ITEQ are 
in Italian language. Next, we only used ITEQ-EN (10% English set) along with CREQ and 
GUEQ to train a new model. The results are shown in the row with SC2 on BOEQ (30%) test 
set. We can see 9% increase in AUC. 

Exp. 
Type Source (s): Train set (size) Target: Test 

set (size) Precision Recall Weighted 
Avg. F1 AUC 

SS ITEQ (100%) CREQ (30%) 0.76 0.56 0.57 0.85 

MSWT ITEQ (100%) + CREQ (70%) CREQ (30%) 0.85 0.85 0.84 0.95 

SS CREQ (100%) GUEQ (30%) 0.62 0.55 0.51 0.85 

MS ITEQ (100%) + CREQ (100%) GUEQ (30%) 0.77 0.66 0.69 0.93 

MSWT ITEQ (100%) + CREQ (100%) + GUEQ (70%) GUEQ (30%) 0.84 0.85 0.83 0.97 

SS GUEQ (100%) BOEQ (30%) 0.73 0.42 0.48 0.73 

MS ITEQ (100%) + CREQ (100%) + GUEQ (100%) BOEQ (30%) 0.76 0.49 0.55 0.68 

MSWT ITEQ (100%) + CREQ (100%) + GUEQ (100%) 
+ BOEQ (70%) BOEQ (30%) 0.90 0.87 0.87 0.95 

SC1 CREQ (100%) + GUEQ (100%) BOEQ (30%) 0.80 0.43 0.56 0.76 

SC2 ITEQ-EN (100%) CREQ (100%) + GUEQ 
(100%) BOEQ (30%) 0.77 0.45 0.51 0.77 

SC3 ITEQ-EN (100%) + CREQ (100%) + GUEQ 
(100%) + BOEQ (70%) BOEQ (30%) 0.88 0.85 0.85 0.97 

SS BOEQ (100%) NEEQ (30%) 0.48 0.25 0.15 0.64 

MS ITEQ (100%) + CREQ (100%) + GUEQ (100%) 
+ BOEQ (100%) NEEQ (30%) 0.54 0.25 0.15 0.60 

MSWT ITEQ (100%) + CREQ (100%) + GUEQ (100%) 
+ BOEQ (100%) + NEEQ (70%) NEEQ (30%) 0.87 0.86 0.86 0.97 

SC1 CREQ (100%) + GUEQ (100%) + BOEQ 
(100%) NEEQ (30%) 0.53 0.29 0.21 0.63 

SC2 ITEQ-EN (100%) + CREQ (100%) + GUEQ 
(100%) + BOEQ (100%) + NEEQ (70%) NEEQ (30%) 0.86 0.86 0.86 0.98 

Table 2. In-domain single-source (SS), multi-source (MS), multi-source with target crisis 
(MSWT), and special case (SC) model adaptation results for earthquake datasets 

  

In the third test, we include 70% of the BOEQ labels along with ITEQ-EN, CREQ, and GUEQ. 



 
 

For this the results can be seen in SC3 row of Table 2.  When we use the ITEQ-EN, i.e., only the 
English language tweets related to the Italy earthquake, we noted an increase in the performance 
of new classifier. 

Exp. 
type 

Source (s): Train set (size) Target: Test 
set (size) 

Precision Recall Weighted 
Avg. F1 

AUC 

SS PHFL (100%) QUFL (30%) 0.60 0.50 0.51 0.82 

MSWT PHFL (100%) + QUFL (70%) QUFL (30%) 0.86 0.85 0.85 0.97 

SS QUFL (100%) ABFL (30%) 0.74 0.61 0.61 0.83 

MS PHFL (100%) + QUFL (100%) ABFL (30%) 0.42 0.43 0.40 0.81 

MSWT PHFL (100%) + QUFL (100%) + ABFL 
(70%) 

ABFL (30%) 0.80 0.80 0.79 0.96 

SS ABFL (100%) MNFL (30%) 0.61 0.52 0.53 0.77 

SC1 PHFL (100%) MNFL (30%) 0.70 0.61 0.60 0.91 

SC2 PHFL (100%) + MNFL (70%) MNFL (30%) 0.77 0.75 0.75 0.95 

MS PHFL (100%) + QUFL (100%) + ABFL 
(100%) 

MNFL (30%) 0.74 0.69 0.70 0.89 

MSWT PHFL (100%) + QUFL (100%) + ABFL 
(100%) + MNFL (70%) 

MNFL (30%) 0.81 0.80 0.80 0.95 

SS MNFL (100%) CLFL (30%) 0.65 0.54 0.48 0.85 

SC QUFL (100%) + ABFL (100%) CLFL (30%) 0.75 0.67 0.70 0.94 

MS PHFL (100%) + QUFL (100%) + ABFL 
(100%) + MNFL (100%) 

CLFL (30%) 0.80 0.76 0.76 0.94 

MSWT PHFL (100%) + QUFL (100%) + ABFL 
(100%) + MNFL (100%) + CLFL (70%) 

CLFL (30%) 0.83 0.83 0.83 0.96 

SS CLFL (100%) SDFL (30%) 0.55 0.41 0.29 0.78 

MS PHFL (100%) + QUFL (100%) + ABFL 
(100%) + MNFL (100%) + CLFL (100%) 

SDFL (30%) 0.61 0.53 0.54 0.85 

MSWT PHFL (100%) + QUFL (100%) + ABFL 
(100%) + MNFL (100%) + CLFL (100%) 
+ SDFL (70%) 

SDFL (30%) 0.88 0.88 0.88 0.98 

Table 3.  In-domain single-source (SS), multi-source (MS), multi-source with target crisis 
(MSWT), and special case (SC) model adaptation results for floods datasets 

 
For floods datasets, again rows with experiment type “SC” show the results of the special cases 
analysis. For instance, in case of MNFL, we can observe an increase in accuracy when using 
PHFL as train set as compared to PHFL, QUFL, and ABFL altogether for training (see rows 
“MS” and “SC1” of MNFL). 



 
 

 

 

Source (s): Train set (size) Target: Test 
set (size) 

Precision Recall Weighted 
Avg. F1 

AUC 

BOEQ (100%) PHFL (30%) 0.38 0.35 0.26 0.58 

BOEQ (100%) + PHFL (70%) PHFL (30%) 0.70 0.72 0.63 0.89 

BOEQ (100%) + MNFL (100%) PHFL (30%) 0.66 0.61 0.58 0.86 

BOEQ (100%) + MNFL (100%) 
+ ABFL (100%) 

PHFL (30%) 0.64 0.61 0.58 0.86 

NEEQ (100%) MNFL (30%) 0.35 0.42 0.27 0.55 

MNFL (100%) NEEQ (30%) 0.43 0.31 0.25 0.59 

SDFL (100%) ITEQ (30%) 0.62 0.50 0.46 0.69 

BOEQ (100%) + MNFL (100%) NEEQ (30%) 0.50 0.28 0.22 0.64 

Table 4. Cross-domain single-source model adaptation results for both earthquake and 
floods datasets 

 
The general lesson learned from Table 2 is that including more training data, even from a mixed-
language source, improves the accuracy significantly. However, the following are interesting 
observations. 
Data from the Italy earthquake had a serious negative effect in some settings (Bohol earthquake 
and Nepal earthquake) but, it was useful in others (Costa Rica and Guatemala earthquakes). We 
believe that this exception is because 90% of the Italian earthquake data was in Italian, whereas 
our test case contained tweets related to earthquakes in Bohol and Nepal were primarily in 
English. This result seems to suggest that Italian is closer to Spanish as a language than English, 
an observation validated by multiple speakers of these languages and by the language-tree6. In 
cases where the language is significantly different, e.g., ITEQ versus BOEQ or NEEQ, it is better 
to leave the training set out. However, in these cases, it is best to select the training examples in 
ITEQ that are in English and using it to train in these cases, as we showed which increases the 
classifier performance. 

A proposition could be made that we should segregate tweets based on language and use tweets 
from the same language to train and test. However, that is not an optimal strategy. Note that, for 
the target GUEQ, learning from the same language Costa Rica earthquake and testing it on 
GUEQ is worse than learning from combining the Spanish and Italian tweets. So, at least, when 
you do not have enough Spanish data to train, training using Italian was valuable and increased 
accuracy. Training data from target, even in small proportion, always help increase classifiers 

                                                
6 An interesting by-product of our work could be to construct a language-tree and language-language distances 
based on online language in disaster-related tweets. Perhaps such a tree/distance measure could be then used to 
select which languages can be used for cross-training and which should not be used, especially in cases where we 
have few training examples in one language. 



 
 

performance. This can be seen in all experiments in which 70% of the target labels were included 
in the training set. 

Table 3 also confirms the general philosophy that more training data is good. However, there are 
some interesting observations there too. For the test case MNFL, using the Philippines data and 
the Manila data performs almost as well as when we put the other data in. This shows that using 
data from the same area will be immensely useful because the language mixture (Tagalog, 
English) used in these two cases is almost exactly the same. However, adding QUFL and ABFL, 
which are solely in English, seems to improve the performance slightly. Colorado floods data 
does not help much on Sardinia floods, however, a combination of PHFL, QUFL, ABFL, MNFL, 
and CLFL improves the performance, which then reaches to an acceptable performance when 
SDFL is added in the training set. 
Generally, we see that tagging a few tweets related to the same earthquake/flood still improves 
the performance significantly. Perhaps this may mean that we still do not have enough data and 
in the future, when we collect more data, we can eliminate the requirement for training on the 
current (target) dataset. 
Initial results are promising to show that there may be some signal in using the flood related 
tweets to augment earthquake tweets but it also has the chance of reducing the accuracy of the 
classifier.  For example, Table 4 (last row) shows that adding MNFL to BOEQ increased the 
performance on the test set NEEQ. However the previous two rows show a slight decrease in 
accuracy by adding the flood-related training set. The general consensus seems to be that given 
our collection of tagged tweets from the past, we should stick to using all the tweets from the 
same domain provided the language mixture is similar.  At this point, using cross-domain 
training sets have not conclusively shown any consistent improvement in the accuracy. 
As we have observed that the event-specific data always help improve classification performance 
of a classifier, we presented two alternative approaches to incorporate event-specific unlabeled 
data in the training phase. When there are no budget constraints, the approach that uses machine 
classified items with high confidence score from target domain are useful to be included in the 
training sets. However, under budget constraints, the active learning approach seems more 
feasible, as it achieves high accuracy with less labeled examples. 
 
5. ENHANCING PERFORMANCE OF BASELINE MODELS 
In the previous section, we show the utility of the labeled data from past crisis events using 
different settings. In this section, we consider the best performing models as baseline and try to 
enhance their classification performance using different techniques. Specifically, first we try to 
use target events unlabeled data to boost classifiers performance and second we employ active 
learning approach to determine if it helps improve classifier’s performance. 
5.1 Boosting Performance of Models Using Target Unlabeled Data 
Obtaining event-specific labeled data to train machines in the early hours of a crisis situation is 
hard due to a number of reasons such as scarcity of human volunteers for manual annotation 
tasks. However, a vast amount of unlabeled event-specific data is available during those hours. 
In the above described experiments, we have observed that event-data plays a significant role in 
improving classification accuracy of a classifier when considered for machine training. For 
instance, in the cases of ABFL, MNFL, and SDFL, an increase of 16%, 6%, and 13% 



 
 

respectively have been observed in AUC when event-labeled data included in training sets.  
To test whether the unlabeled data of a target event can be useful or not when used as training 
set, in this section we perform a series of experiments. Specifically, we aim to determine whether 
target’s unlabeled items, when classified using a pre-trained (using past events labeled data) 
classifier, used as training examples help improve classifier’s performance or not. For this 
purpose, we take models from the above mentioned experiments, which outperform without 
event data, to automatically predict labels for a target’s unlabeled items. We consider target’s 
machine classified items for which the classification accuracy is high (e.g. > 80%) as potential 
candidates to be used as training examples along with existing labeled items from past events. 
Trained models are evaluated using the hold out test sets (30%) described in the previous 
sections. 

 
Figure 2: Boosting performance of classifiers using target's unlabeled data for four 
different events (two earthquakes and two floods) 
Figure 2 depicts the results of our experiments on four different events. Specifically, we used 
two earthquakes and two floods events and tested three different strategies for training a 
classifier as follows:  

(a) Using only past events labeled data as training examples  
(b) Using machine labeled event-specific data as training examples  

(c) Using only event-specific labeled data as training examples  
We can see that in all four cases, the setting “b” is better than the setting “a”. That is, when there 
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is no event-specific labeled data available in the early hours of a crisis event, it is feasible to take 
the unlabeled data from the event and use machines trained on past-labeled data for prediction. 
Then, select items for which the machine confidence is high. However, it is evident that the most 
the event-specific human-labeled data the better, as it can be clearly seen in the case of setting 
“c”, in which we use human-labeled examples from the same event. 
5.2 Boosting Performance of Models Using Active Learning 
To enable the rapid classification of target events items, in this section the setting we consider 
for supervised learning assumes that we have a large amount of labeled data from past events 
(i.e. source domains), a large amount of unlabeled data from target domain (i.e. event itself), and 
a small budget in terms of money or availability of volunteers to help annotate messages in the 
early hours of a crisis event. Given this setting, the idea is to train a best performing classifier by 
intelligently utilizing the budget, only when it is necessary. 

For this purpose, first we aim to learn a model using the past events labeled data and then 
employ an active learning technique to improve the model’s performance. Active learning is a 
well-known approach in many machine learning problems where unlabeled data is abundant, but 
labeled data is scarce or very expensive to obtain (Settles 2010; Cohn et al. 1994). Basically, 
once employed, the active learning approach in a supervised learning system overcome the issue 
of scarcity of labeled data by selecting unlabeled items from the target event to be labeled by a 
human annotator. However, a number of different strategies can used to decide which items from 
target domain should be selected for labeling. In this work, we follow the one in which the 
learner selects the items from the target unlabeled data about which the model is least certain 
about its label. 

 
Figure 3: Performance improvement of classifiers using active learning approach for four 

events (two earthquake and two floods) 
Specifically, we begin with a model trained on the labeled data from past events. Next, the active 
learning method picks items for which it is unsure about their classification, for example, the 
items that are close to the decision boundary and for which the labels are maximally informative. 
Human annotators tag the selected target event’s items. Finally, the human annotated items are 
included in the training set of the classifier. Figure 3 shows the results obtained using the active 
learning approach on both earthquakes and floods events. We used best performing models on 
past events data and used active learning to select the items which could be more beneficial for 
the baseline models. A model is trained after receiving a batch of 30 labeled items from target 
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event and evaluated using the hold out test sets (30%) described in the previous sections. 
The results clearly show the utility of the active learning approach as we can see that models 
achieve reasonable accuracies with fewer labeled examples. 

6. RELATED WORK 
Mass convergence and disaster events, particularly those with no prior warning, require rapid 
analysis of the available information to make timely decisions (Castillo 2016; Imran et al., 2015). 
With the proliferation of the Web 2.0 technologies, handheld devices, and other sensors, a 
number of opportunities have emerged ranging from early detection of a disaster to perform 
extensive aftermath analysis (Palen 2008; Brownstein et al., 2009). Many research studies 
analyzed the usefulness of this online information for humanitarian response organizations 
(Kavanaugh et al., 2012; Palen et al., 2010; Vieweg et al., 2014; Dashti et al., 2013). Starbird et 
al. (Starbird et al., 2010) analyzed microblog usage and information lifecycles during disaster 
situations. The authors found that the information including geo-location, situational updates and 
warnings can contribute to situation awareness and are typically communicated during each 
crisis-incident on Twitter. Hughes and Palen (Hughes et al., 2009) examined the use of Twitter 
during four high profile disaster events and emergencies. The authors observed that tweets 
posted during such crisis events reveal features of information that can support information 
broadcasting and brokerage. 

Despite a number of issues regarding the trustworthiness and credibility of social media 
information have been identified (Tapia et al., 2011; Castillo et al., 2011; Morris et al., 2012), 
many studies found information posted on microblogging platforms during crises can aid crisis 
response efforts, if processed timely and correctly (Yin et al. 2012; Starbird et al., 2010; Palen et 
al., 2009). Many approaches based on human annotation, supervised learning, and unsupervised 
learning techniques have been proposed to process social media data---for a complete survey see 
e.g., (Imran et al., 2015). 
In this work, we use supervised machine learning techniques to classify crisis-related messages. 
Many such efforts and systems based on machine learning techniques have been developed in 
past e.g., (Mendoza et al., 2010; Olteanu 2015; MacEachren et al., 2011; Imran et al., 2014; Roy 
et al., 2013). For instance, ESA (Yin et al. 2012; Power et al. 2014) uses naıve Bayes and SVM, 
EMERSE (Caragea et al., 2011) uses SVM, AIDR (Imran et al. 2014) uses random forests, and 
Tweedr (Ashktorab et al. 2014) uses logistic regression. The basic assumption for all these 
systems to achieve high classification accuracy is the availability of fairly big human-labeled 
data. However, due to the scarcity of training data, which is one of the basic ingredients for such 
approaches to work well, causes delays in machine training thus humanitarian efforts in time-
critical situations cannot be launched effectively.  
To overcome the issue of the scarcity of training data during a new crisis and emergency, we 
study the usefulness of human-labeled data (training data) from past crises. Li et al., (2015) 
studied the problem of domain adaptation. They combine source labeled data with target 
unlabeled data to train classifiers (Naive Bayes in their case) and observed a high performance 
by including target crisis data in training set as compared to only source crisis data. Their 
findings, to some extent, are inline with ours; however, the evaluation mechanism that they have 
used is based on cross-validation using 5-fold setting. However, in our case, we always use a 
holdout test set across all variations of experiments, which is a more challenging problem in an 



 
 

online classification setting. Moreover, we also provide empirical results by training models in 
cross-language settings. 

7. CONCLUSIONS 
Availability of training data to train machine learning classifiers during the early hours of a crisis 
situation can help gain early insights for rapid crisis response. We show that using labeled data 
from past events of the same type are generally always useful if the training and testing data are 
from the same language. When there are not enough tweets in the one language (e.g., Spanish), 
labeled tweets in a different language (e.g., Italian) can be useful if the two languages in question 
are very similar (e.g., Italian and Spanish) but not when they are not (e.g., Italian and 
English/Tagalog).  If there are reasonable number of labeled tweets from the same domain (e.g., 
earthquakes), then, we could not establish the utility of using labeled tweets from a different 
domain (e.g., floods).  In one such case, the performance improved slightly while in another it 
decreased. Overall, event-specific labeled data always help to boost models performance. For 
this reason, we also presented two approaches to improve the performance of a baseline model. 
Both approaches, depending on budget constraints, help improve classification performance. 
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