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ABSTRACT

Huge amounts of data generated on social media during emergency situations is regarded as a trove of
critical information. The use of supervised machine learning techniques in the early stages of a crisis
is challenged by the lack of labeled data for that event. Furthermore, supervised models trained on
labeled data from a prior crisis may not produce accurate results, due to inherent crisis variations. To
address these challenges, the authors propose a hybrid feature-instance-parameter adaptation approach
based on matrix factorization, k-nearest neighbors, and self-training. The proposed feature-instance
adaptation selects a subset of the source crisis data that is representative for the target crisis data.
The selected labeled source data, together with unlabeled target data, are used to learn self-training
domain adaptation classifiers for the target crisis. Experimental results have shown that overall the
hybrid domain adaptation classifiers perform better than the supervised classifiers learned from the
original source data.
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INTRODUCTION

Social media is becoming a more prevalent part of our everyday life, due to the advancements
in technology and virtualization. The availability of the Internet, cameras and real-time message
boards at our fingertips has brought about live and parallel reporting, and witness testimonies during
many events. These reports can be useful to responders and can help create awareness among the
populace, especially in emergency situations (Meier, 2015; Watson, Finn, and Wadhwa, 2017).
Despite the potential benefits, major response groups and organizations under-utilize these sources
of information, as therein lie many administrative and technical challenges (Meier, 2013). Among
the challenges, there are reliability issues associated with public and unstructured data, as well as
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information overload issues, as millions of messages are posted during a crisis situation (Bullock,
Haddow, and Coppola, 2012).

There are many recent studies that propose the use of machine learning techniques to provide
automated methods for analyzing social media data to reduce the information overload (Imran et
al., 2015; Beigi et al., 2016). Machine learning techniques can help transform raw data into usable
information by labeling, prioritizing and structuring data, and making them beneficial to responders
and to the populace in times of need (Qadir et al., 2016). However, supervised learning algorithms
rely on labeled training data to build predictive models. Accurate labeling of data for an emerging
crisis is both time consuming and expensive, and, hence, it is not appropriate to assume that labeled
data for a current crisis will be promptly available to be used for analysis. The lack of labeled data
for emerging crisis events prohibits the use of supervised learning techniques.

To address this challenge, several works proposed to use labeled data from prior “source” crises
to learn supervised classifiers for a “target” crisis (Verma et al., 2011; Imran et al., 2013; Imran, Mitra,
and Srivastava, 2016). However, due to the divergence of each crisis in terms of location, nature, season,
etc. (Palen and Anderson 2016), the source crisis might not accurately represent the characteristics
of the target crisis (Qadir et al., 2016; Imran et al., 2015). Domain adaptation techniques (Pan and
Yang, 2010; Jiang, 2008) are designed to circumvent the lack of labeled target data by making use
of unlabeled target data as guideposts for the readily available labeled source data. Studies in the
emergency space have shown that using domain adaptation techniques, which use target unlabeled
data and source labeled data together, significantly improve classification results as compared to
supervised techniques that solely use labeled source data (Li et al., 2015, 2017). Unlabeled data from
the target crisis becomes more abundant as the event unfolds, and it can enable the use of domain
adaptation techniques during emerging or occurring crisis events.

There are several ways in which the unlabeled target data can be used with domain adaptation
techniques, including parameter-based adaptation, instance-based adaptation and feature-based
adaptation (Pan and Yang, 2010). In the parameter-based adaptation, the labeled source data is used
together with the unlabeled target data to identify shared parameters that result in good predictions
for the target data. In the instance-based adaptation, the unlabeled target data is used to identify and/
or reweigh the most relevant source labeled instances with respect to the target classification task,
while in feature-based adaptation, the target unlabeled data and source labeled data are used together
to find a feature representation that minimizes the difference between the two domains. Relevant prior
work on crisis tweet classification using domain adaptation has relied on parameter-based adaptation.
Specifically, Li et al. (2017) proposed to learn weighted source and target Naive Bayes classifiers
with the iterative methods of Expectation-Maximization (EM) (Dempster, Laird, and Rubin, 1977)
and Self-Training (ST) (Yarowsky, 1995) and showed that the resulting classifiers can accurately
predict the target.

Mazloom et al. (2018) proposed to use a combination of two domain adaptation approaches,
specifically a hybrid between feature-based adaptation and instance-based adaptation, to reduce
the variation between the two domains. First, the Alternating Nonnegative Least Squares Matrix
Factorization (LSNMF) in (Lin, 2007) is used on the combined source and target data, represented
using binary vectors, to create a dense and reduced conceptual representation of source and target
instances. Subsequently, the k-Nearest Neighbors algorithm (kNN) is used to select a subset of the
source instances which are most similar to the target instances, according to the cosine similarity
calculated based on the reduced common representation. Finally, the selected subset is subsequently
used to learn Naive Bayes classifiers for the target crisis.

In this study, we propose to use a combination of all three domain adaptation approaches,
specifically a hybrid between feature-based adaptation, instance-based adaptation, and parameter-
based adaptation to reduce the variation between the source and target domains. As in Mazloom et al.
(2018), we first use the Alternating Nonnegative Least Squares Matrix Factorization (LSNMF) Lin
(2007) on the combined source and target data to create a dense and reduced conceptual representation
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of source and target instances. Subsequently, the k-Nearest Neighbors algorithm (kNN) is used to
select a subset of the source instances which are most similar to the target instances, according to the
cosine similarity calculated based on the reduced common representation. Finally, the parameter-based
adaptation approach used in Li et al. (2017) is used on the selected subset of the source labeled data
combined with the available target unlabeled data. The objective is to gain an understanding of the
benefits provided by the hybrid feature-instance-parameter adaptation approach, as compared to the
independent feature-instance and parameter-based adaptation approaches.

As an application, we focus on the task of classifying tweets as being relevant to the event of
interest or not relevant. This is one of the most basic but crucial classifications needed during a
crisis event, as subsequent analysis should be done only on data relevant to the crisis in question.
Furthermore, this classification is not trivial: supervised classifiers may not achieve accurate results
due to domain variations.

To summarize, our main contributions are as follows:

e We extend the hybrid feature-instance adaptation approach proposed in Mazloom et al.
(2018) to a hybrid feature-instance-parameter adaptation approach, where self-training is
used with the feature-instance adapted source data to transfer parameters from the source
crisis to the target crisis;

e Asopposed to Mazloom et al. (2018), where experiments were performed only on the CrisisLexT6
(Olteanu et al., 2014a) dataset, we perform an extensive set of experiments on pairs of source-
target crisis events from two datasets, CrisisLexT6 (Olteanu et al., 2014a) and 2CTweets (Schulz,
Guckelsberger, and Janssen, 2017). The goal is to evaluate the feature-instance adaptation
approach by comparison with approaches that make use of either feature-based adaptation or
instance-based adaptation, but not both;

e We study the variation of performance with the parameters of the feature-based adaptation
(specifically, the number of features, f), and instance-based adaptation (specifically, the number
of neighbors, k), respectively, to identify parameters that result in good overall performance.

METHODS

The goal of this study is to design and evaluate a hybrid feature-instance-parameter adaptation
approach by combining two adaptation approaches that have been successfully used in the context
of classifying crisis-related tweets, specifically a feature-instance adaptation approach proposed by
Mazloom et al. (2018), with the self-training adaptation approach proposed by Li et al. (2017). As a
base classifier, both Mazloom et al. (2018), and Li et al. (2017) have used Naive Bayes, a simple but
powerful classifier, which does not have any tunable hyper-parameters. Furthermore, Li et al. (2017)
have shown that simple Bernoulli Naive Bayes classifiers are very appropriate for analyzing crisis-
related data posted on social media, as they give results competitive with those of more sophisticated
algorithms which have tunable hyper-parameters. However, other studies in the crisis domain have
successfully used Random Forest (Imran, Mitra, and Srivastava 2016), an ensemble-type classifier,
which is generally known to reduce the variance (Genuer 2012). Given the success of both Naive
Bayes and Random Forest classifiers, in this study we investigate both classifiers in the context of
the hybrid feature-instance-parameter adaptation approach.

We will next review the feature-instance adaptation approach introduced in (Mazloom et al.
2018), and then describe the combination of this approach with a self-training approach, similar to
the one proposed in Li et al. (2017).

Feature-Instance Adaptation Approach

Given a source and target pair of crises, the goal is to adapt the source data by reducing the variance
with respect to the target data, and then train a Naive Bayes or Random Forest classifier on the adapted
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source data. The source adaptation is guided by the target unlabeled data. More specifically, a hybrid
feature-instance adaptation approach is used to select a subset of the source instances, which are most
similar to the target instances. First, the target instances are used to construct a target vocabulary V,
which is used to represent both source and target data as bag-of-words binary vectors. As part of the
feature adaptation step, the resulting data matrix D is decomposed using the popular Least Squares
Non-Negative Matrix Factorization (LSNMF) proposed by Lin (2007). The implementation of this
method is available in Python under the “nimfa” package. Intuitively, the decomposition will produce
a reduced dense representation of the data, which is more suitable for identifying similar instances
as compared to the sparse binary representation (Guo and Diab 2012).

As part of the instance adaptation step, the reduced representation is used to identify source
instances that are most similar to the target. More precisely, for each target (unlabeled) instance,
we calculate the cosine similarity to the source instances and select the k nearest neighbors from
the source. If two different target instances have the same source instance among the k nearest
neighbors, the selected subset of the source may contain duplicate instances. Mazloom et al.
(2018) experimented with two settings, one in which duplicate neighbors were retained (i.e.,
seen as reweighing source instances that are close to many target instances), and another one in
which duplicates are removed (so that each instance is used with the same weight). Experimental
results showed that the setting where duplicates are retained gives better results overall, and
thus, we only use this setting in the current study. Mazloom et al. (2018) also demonstrated that
results from the joint feature-instance adaptation are superior to that of their standalone versions
and provide better consistency throughout different datasets. Our experimental results regarding
this matter had similar results to their work hence, only the joint adaptation results are discussed
further in this study.

Finally, Naive Bayes and Random Forest algorithms, respectively, are used to learn classifiers
from the selected subset of the source. For Naive Bayes, Mazloom et al. (2018) also experimented
with two settings: one in which the Gaussian Naive Bayes algorithm is used on the reduced
representation of the selected source instances, and another one in which the Bernoulli Naive
Bayes algorithm is used on the original binary representation of the selected source instances.
Experimental results showed that the Bernoulli Naive Bayes classifiers are better than the Gaussian
Naive Bayes classifiers. In preliminary examination with Random Forest, we observed similar
results. Therefore, in this study, we train Bernoulli Naive Bayes and Random Forest classifiers
on the original binary representation of the selected source instances. The resulting classifiers
are evaluated on a separate target test dataset.

Self-Training Adaptation

Self-training is an iterative parameter-based approach for adapting a source classifier to a target event.
Initially, a classifier is learned from the source labeled data, SL. At each iteration, the current classifier
is used to label the available unlabeled target data 7U, and the most confidently labeled target instances
n in each class are used to update the classifier. This process is repeated for a fixed number of iterations.
A parameter 7y controls the contribution/weight of the source instances as opposed to the target
instances at each iteration i. Intuitively, with each iteration, i, the weight gradually shifts from the
source instances towards the target instances.

The classifier adaptation works naturally for Naive Bayes, where the probability estimates can
be easily adjusted as new training data becomes available. However, this is not the case for Random
Forest classifiers, where the structure of a tree might be altered when new training data is added.
Instead of changing the existing trees, or building the whole random forest classifier from scratch,
it is preferable to add new trees to the existing classifier. This is the approach followed in this study.
This approach is preferable to rebuilding the entire forest which significantly reduces efficiency and
scalability for larger datasets.
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Combining Feature-Instance Adaptation With Self-Training

We propose a hybrid feature-instance-parameter adaptation approach by combining the feature-instance
adaptation with a variant of the self-training approach used by Li et al. (2017), as described above.
Specifically, instead of directly using the Bernoulli Naive Bayes and Random Forest classifiers on the
selected source labeled data, the iterative process of self-training is used to adapt the parameters of
the classifiers learned from the selected source, reverted to the binary representation, based on target
unlabeled data. In the case of the feature-instance adaptation, the resulting classifiers are evaluated
on a separate target test data.
The hybrid feature-instance-parameter approach is summarized in Algorithm 1.

Algorithm 1. Hybrid feature-instance-parameter adaptation

Input: Source labeled data, SL, target unlabeled data, TU, and

target test data, TT.

1: Construct a vocabulary, V, using the target unlabeled data, TU.

2: Represent source, SL, and target, TU, as V -dimensional binary
vectors, and create the combined source and target data matrix, D.

3: Feature adaptation: Perform the Least Squares Non-Negative
Matrix Factorization (LSNMF) on the combined source and
target data matrix, D, resulting in a reduced f -dimensional
representation of the paired events.

4: Instance adaptation: Using the reduced representation, for each
target instance in TU, find the k nearest source instances in
SL, and add them (binary representation) to the adapted source,
Adap- SL, while retaining duplicates.

5: Self-training: Use the adapted source data, Adap- SL, and
target unlabeled data, TU (binary representation), to
iteratively learn a target classifier.

6: Evaluate the resulting hybrid classifier on the target test
data, TT.

Dataset

This study will use two datasets to evaluate the proposed hybrid adaptation approach. The first dataset,
CrisisLexT6 (T6) (Olteanu et al., 2014b), is a collection of tweets collected from six disasters that
occurred in United States, Canada and Australia between the period of October 2012 and July 2013.
The dataset contains approximately 10,000 tweets per disaster labeled as related to a disaster (“on
topic”) or not (“off topic”). The second dataset, 2CTweets (2C) (Schulz, Guckelsberger, and Janssen,
2017), is a collection of tweets about incidents, such as car crash, fire or shooting, which happened
in 10 different cities. Tweets were labeled as incident related (Yes) or not (No).

The datasets were originally collected though the Twitter API using keywords, geographic
location and the affected areas of their respective crises. The data was pre-processed using the
procedure described in Li et al. (2015), which comprises of replacing URLs, usernames, and emails
with placeholders, as well as removing non-printable ASCII characters, re-tweets, and duplicate
tweets. Twelve source-target pairs are used for each dataset in the experiments. For the CrisisLexT6
dataset, the events are paired based on chronological order and the pairs are selected to match the
pairs in (Mazloom et al., 2018). For the 2C dataset, each event in a dataset is paired with all the other
events, and a subset of pairs is selected as follows: First, pairs were ranked based on the accuracy
results produced by the supervised Bernoulli Naive Bayes classifier learned from the original source.
Subsequently, a set of pairs was selected to ensure a wide range of accuracy values, while avoiding
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using the same event as source or as target in too many pairs. The goal was to obtain a subset of pairs
that is representative for the set of all possible pairs.

Each pair was converted to a binary representation using the target vocabulary, which consists
of approximately 1000 words on the average, after selecting words that are repeated at least ten or
four times for T6 and 2C, respectively, within source and target combined. These parameters were
primarily chosen based on prior work (Li et al., 2015; Mazloom et al., 2018) while considering
sufficient usage and feature loss minimization. This would result in pairs with about 1000 features
for analysis. Details about the events in each dataset and number of instances/features in each event
are shown in Table 1. The specific pairs of events used for the two datasets are shown in Table 3.

Table 1. List of the events in the CrisisLexT6 dataset (top) and the 2CTweets dataset (bottom) used in the experiments,

together with information about the number of instances/features in each event.

CrisisLexT6 Crisis Instances
Features
Abbreviation Disaster Related Not Related Total
SAN Sandy Hurricane 3870 6138 10008 1380
QUE Queensland Floods 4619 5414 10033 1242
BOS Boston Bombings 4364 5648 10012 1317
OKL Oklahoma Tornado 5165 4827 9992 1143
WES West Texas Explosion 4760 5246 10006 1239
ALB Alberta Floods 4841 5186 10030 1322
2CTweets Crisis Instances
Features
Abbreviation Disaster Related Not Related Total
BOS Boston Bombings 604 2216 2820 1648
BRI Brisbane 698 1898 2587 1287
CHI Chicago 214 1270 1484 862
DUB Dublin 199 2616 2815 1384
LON London 552 2444 2996 1673
MEM Memphis 361 721 1082 771
NYC NYC 413 1446 1859 1119
SAN SanFrancisco 304 1176 1480 935
SEA Seattle 800 1404 2204 1375
SYD Sydney 852 1991 2843 1601

Table 2. List of the selected pairs used for the analysis results in the CrisisLexT6 dataset (top) and 2CTweets dataset (bottom)
used in the experiments

Pairs CrisisLexT6
Source BOS | BOS |BOS |OKL |[QUE |QUE |QUE |[SAN |[SAN | SAN | SAN [ SAN
Target ALB |[OKL | WES | ALB |ALB |[BOS |[OKL | ALB |BOS | OKL | QUE | WES
Pairs 2CTweets
Source SYD |[LON | DUB | BRI CHI SAN | NYC | SEA |LON | BRI LON | CHI
Target DUB | CHI SYD | SAN |BOS |LON |MEM |NYC | MEM |BOS |SEA | BRI
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Table 3. Queensland Flood related example tweets from the CrisisLexT6 dataset where Bernoulli Naive Bayes classification
after adaptation has correctly classified the tweets contrary to the baseline (Original). f denotes instance adaptation only, k
denotes feature adaptation, and f - k denotes feature-instance adaptation. The check symbol (v') signifies correct classification
while the cross symbol () signifies misclassification. Parameter adaptation for the examples below had similar results.

CrisisLexT6 Tweets Original f k f-k
USERNAME Dear AziaddictsAU and friends down under in Queensland. It’s all < v < <
over the news once again that the worst flood... URL ...
USERNAME My thoughts go out to all of the flood and fire victims around x < v x
Australia, stay strong
DTN Japan: Gladstone flood victims returning home: Floodwaters are receding at < % % v
Gladstone, in central Queensland,... URL
#Australia | #Queensland | #Flood | #Tornado | Tape your windows in a cross- < < v v
shape; windows are shattering due to pressure. Don’t sit close.
News Flood crisis unfolding in Lockyer Valley: A serious flood crisis is emerging < x % <
in Queensland’s Lockyer Valle... URL

In each pair, the first event will be used as the source to adapt, and the second will be used as the
target to classify.

Experimental Setup

This section states the research questions that motivated the study. It also describes baselines, the
evaluation strategy, and technical details of the approaches used, including their configuration setup
in the experiments conducted.

Research Questions

Our experiments are designed to answer the following research questions:

RQ1: Does the feature-instance adaptation approach show similar patterns on both datasets used
in the study, specifically, T6 and 2C datasets? How do the results of the feature-instance
adaptation compare with the results of supervised classifiers learned from the source data
without any adaptation?

RQ2: Can the self-training parameter adaptation help improve the results of the feature-instance
adaptation approach? Similarly, can the feature-instance adaptation improve the results of the self-
training approach used on the original source labeled data together with the target unlabeled data?

RQ3: Between Bernoulli Naive Bayes and Random Forest, which classifier benefits most from the
hybrid feature-instance-parameter adaptation approach?

RQ4: What specific source-target pairs benefit the most from the adaptation?

RQS5: Does the proposed approach benefit the datasets similarly? What characteristics makes a dataset
more suitable for analysis with the proposed feature-instance-parameter adaptation approach?

Baselines

We compare the proposed hybrid feature-instance-parameter approach against the following baselines:

e Supervised Bernoulli Naive Bayes and Random Forest classifiers learned from the binary
representation of the source and evaluated on the test target data;

e  Feature-instance adaptation with Bernoulli Naive Bayes and Random Forest classifiers, where we
first use the binary representation of the source and target to find a reduced dense representation,
and subsequently learn classifiers from the selected source subset with the binary representation;
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e Self-training parameter adaptation with Bernoulli Naive Bayes and Random Forest as base
classifiers, on the original source-target binary data, without any feature-instance adaptation.

Evaluation Strategy

The 5-fold cross-validation strategy was used for evaluation. This is achieved by creating five
random folds from the target unlabeled data (using the stratified splitting mechanism that ensures
that the overall data distribution is maintained in each fold). In a cross-validation experiment,
four folds are used for the adaptation, as target unlabeled data TU (together with the whole source
labeled data SL), while the fifth fold is used as target test T7. The folds are then rotated such that
each fold is used as the test fold exactly once. As a different TU set is used for adaptation, there
will be a different adapted source at each rotation, which in turn creates a different classifier
for each test fold. For a particular source-target pair, the accuracy results are averaged over five
folds. Furthermore, for a global visual analysis corresponding to a dataset, the accuracy results
are averaged over all the pairs in the dataset.

Classification Setup

Two base classifiers are used in the experiments, Bernoulli Naive Bayes and Random Forests, as
explained in the previous section (Methods). The classification algorithms are always used with the
binary representation of the data, both when the original source data is used and also when a selected
subset of the source data is used. Bernoulli Naive Bayes does not have any hyper-parameters that
need to be set. For Random Forest, the number of trees used is set to 100. The values of the other
parameters are the default values.

Matrix Factorization Setup

Each source-target pair of events is represented by an instance-feature data matrix consisting of
binary BOW (Bag-of-Words) vectors, based on the target vocabulary. Using LSMNF, the matrix is
reduced from approximately 1,000 features into matrices of 30, 50, 100, 200, and 500 features, while
retaining the same instance count.

K-Nearest Neighbors Setup

A key element in the feature-instance adaptation approach is the k -NN step. Given a similarity metric,
in our case, cosine similarity, this process will select the k nearest neighbors for each instance of the
target unlabeled set, TU, from the entire source labeled set, SL. The following k values were used
in the experiments: 1, 3, 5,7, 9, and 11, to understand the effects of this parameters on the results.
Using this method of instance selection, especially for higher values of k, the selected source will
potentially include duplicates. Given the prior work in Mazloom et al. (2018) we will keep duplicate
instances in the selected source.

Self-Training Setup

The self-training classifiers have several hyper-parameters that can be tuned, including the number
of iterations i, the number of target instances n to be added to the training data at each iteration i, and
the parameter v that is used to shift the weight from the source to the target at each iteration. Based
on prior work (Li, Caragea, and Caragea 2017), for the CrisisLexT6 dataset, we setnto 5, and y to
i * 0.002, where i is the current iteration number, and we ran the self-training approach until
convergence, as it was observed that the accuracy increased when more target instances were added
to the training set. For the 2CTweets dataset, where the event size is significantly smaller than the
event size in CrisisLexT6, we set n to 2, v to i * 0.002, and did some preliminary tuning of the
number of iterations, as sometimes, the performance decreased when more target instances were
added to the training set. When Random Forest is used as the base classifier, two new trees are built
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using the selected target unlabeled instances and added to the classifier with weight ~ . Based on
preliminary experimentation, it was also observed that when the number of target trees increases by
1.5 times the source trees, initially set to 100, the integrity of the classifier’s training collapses, hence,
the classifier is limited by the initial number of source trees.

EXPERIMENTAL RESULTS AND DISCUSSION

The average results for different adaptation approaches, over the 12 pairs in the CrisisLexT6 dataset,
are visually shown in Figure 1 for Bernoulli Naive Bayes and Random Forest as base classifiers,
respectively. Similarly, the average results for different adaptation approaches, over the 12 pairs in the
2CTweets dataset, are visually shown in Figure 2 for Bernoulli Naive Bayes and Random Forest as
base classifiers, respectively. The results are discussed in what follows, by analyzing each adaptation
approach with respect to its baseline.

Feature-Instance Adaptation

The results of the feature-instance adaptation are discussed in this section and used to answer our
research question RQ1. As part of the feature-instance adaptation, the original binary feature set for

Figure 1. Average classification accuracy results for the 12 source-target pairs from the CrisisLexT6 dataset. The left side of the
graph shows the results of the following approaches: supervised learning on the original source data, Original, and feature-instance
adaptation (with different values for the number of features f and different values for the number of neighbors k). For example,
the two sections of 30f-1k are interpreted as follows: 30f means LSNMF has reduced the features to 30, while 1k means that one
source instance was selected for each target instance. Duplicates were retained in all feature-instance adaptation experiments,
and the selected source instances were remapped back to their original representation after the adaptation. The right side of the
graph shows combinations of the previous approaches with ST. Results for Bernoulli Naive Bayes are shown in the top graph,
while results for Random Forest are shown in the bottom graph.
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Figure 2. Average classification accuracy results for the 12 source-target pairs from the 2CTweets dataset. The left side of the graph
shows the results of the following approaches: supervised learning on the original source data, Original, and feature-instance
adaptation (with different values for the number of features f and different values for the number of neighbors k). For example,
the two sections of 30f-1k are interpreted as follows: 30f means LSNMF has reduced the features to 30, while 1k means that one
source instance was selected for each target instance. Duplicates were retained in all feature-instance adaptation experiments,
and the selected source instances were remapped back to their original representation after the adaptation. The right side of the
graph shows combinations of the previous approaches with ST. Results for Bernoulli Naive Bayes are shown in the top graph,
while results for Random Forest are shown in the bottom graph.
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each dataset is first reduced to a denser representation using the feature adaptation technique (i.e.,
LSNMF). Afterwards, source instances in the reduced representation are adapted to the target using
the instance adaptation technique (i.e., k-NN). As the last step, the source instances are remapped
back to their original binary representation. The goal of the feature-instance adaptation is to increase
the similarity of the source and target distributions.

We used the TSNE technique (Van Der Maaten 2014), before feature-instance adaptation and after
feature-instance adaptation, to reduce the dimensionality of the source and target data to 2. As a result,
each instance from the source and target data is represented by a two-dimensional vector. We plot the
source and target instances together to visually analyze their distributions before and after adaptation.
The results of the visualization are shown in Figure 3 for a pair of events in the CrisisLexT6 dataset
(specifically, Boston Bombings versus the West Texas Explosion), before adaptation (left) and after
adaptation (right). As can be seen, the two events have distinct distributions before adaptation, but
their distributions are more similar after adaptation.

Figure 1 shows results for combinations of f = 1,5,9 neighbors and k = 30,50,100 features,
respectively, as these values gave better overall results. Figure 1, in the case of CrisisLexT6, the
hybrid feature-instance adaptation approach outperforms the supervised baseline by a significant
margin, Original, for all k, f combinations considered, and for both Bernoulli Naive Bayes and
Random Forest classifiers. On the average, very small differences are seen between different &, f
combinations, when Bernoulli Naive Bayes is used, while smaller k and f values give better results
when Random Forest is used.

10
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Figure 3. Combined source (blue) and target (red) CrisisLexT6 data visualization before (left) and after feature-instance
adaptation (right). It can be seen that before feature-instance adaptation (left), source (blue) instances and target (red)
instances are partially separated into different clusters due to their different distributions. However, after feature-instance
adaptation (right), the clusters have dispersed, and the distributions of the source and target instances have become
similar. This shows that the adaptation technique has minimized variability between source and target distributions. The
visualization is performed using the TSNE technique.
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Somewhat similar patterns are observed for the 2CTweets dataset in Figure 2 when comparing
feature-instance adaptation with the supervised baseline. However, the difference between the feature-
instance adaptation and the supervised baseline is smaller than what was observed for CrisisLexT6.
Furthermore, when using Bernoulli Naive Bayes as a base classifier, a larger k values leads to better
results, while in the case of Random Forest a larger f value gives better results. This may be explained
by the smaller size of the 2CTweets dataset as compared to CrisisLexT6. A larger k value leads to
larger subsets of selected instances, and subsequently better probability estimates for Bernoulli Naive
Bayes. In the case of Random Forest, a larger set of features leads to a more diverse set of trees in
the Random Forest, and subsequently better results.

When comparing the results of the feature-instance adaptation with respect to the classifier used,
overall the Bernoulli Naive Bayes classifier gives better results than the Random Forest classifier for
CrisisLexT6, while the Random Forest classifier gives slightly better results for 2CTweets. This result
could also be explained by the size of the dataset used for training. When the size of the dataset is
smaller, Random Forest, an ensemble classifier, can help boost the results. However, for larger datasets,
the estimates obtained with Bernoulli Naive Bayes are more accurate and lead to accurate classifiers.

Finally, it should be noted that the variance in accuracy observed across different source-target
pairs is relatively small for the instance-adaptation approach, as well as for the original supervised
classifiers. This observation suggests that the adaptation approach is able to consistently improve the
results without causing much variation to the overall data distribution when compared to the Original
data. Examples provided in Table 3 demonstrate that keyworks (Australia) and hash tags are best
identified by the instance adaptation approach, denoted by k, whilst feature adaptation best captures
news concept and negative sentiments. Consequently, instance-feature adaptation makes use of the
best from both techniques.

Hybrid Feature-Instance-Parameter Adaptation

The self-training classification method was used as a parameter adaptation approach and combined
with the feature-instance adaptation. As can be seen in Figure 1, for the CrisisT6 dataset, both Bernoulli
Naive Bayes and Random Forest classifiers benefit from parameter adaptation with self-training.
Specifically, for Bernoulli Naive Bayes, on the average, the results of the self-training classifier, ST-
Original, are better than the results of the supervised baseline, Original, by 8%. Similarly, for Random
Forest, on the average, the results of the self-training classifier, ST-Original, are better than the results
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of the supervised baseline, Original, by 6%. Furthermore, the results of ST-Original are better than
the results of the feature-adaptation approaches for both Bernoulli Naive Bayes and Random Forest
classifiers, showing that parameter adaptation is better than the feature-instance adaptation when
each approach is used by itself. However, when combining feature-instance adaptation with self-
training, accuracy is further increased. The increased accuracy of the combined feature-instance and
parameter adaptation supports the idea that each adaptation approach is able to transfer complementary
information from the source, and together they provide a better training base for the target when a
large enough sample set is available.

As can be seen in Figure 2, the 2CTweets dataset presents a similar pattern when the Bernoulli
Naive Bayes is used, although the increase produced by self-training is smaller than the increase
observed for CrisisLexT6. When the Random Forest classifier is used, the results produced by self-
training, ST-Original, are worse on the average than the results produced by the supervised baseline,
Original, and a high variance is observed between different source-target pairs. The results improve
when self-training is used in combination with the feature-instance adaptation, but overall, they are
still worse than their feature-instance adaptation counterparts. Intuitively, the poor performance of
self-training, in this case, can be explained by the size of the data and the way the self-training is
implemented for Random Forest. Specifically, given the small size of the data, we only add two
target instances from each class to the training set (four instances all together). Those instances are
used to create two new trees, that are added to the previous trees in the Random Forest. Given that
the two new trees are based on four instances, they will be somewhat biased. On the other hand, we
observed that adding more target instances to the training set results in incorrectly labeled instances
being used, which also leads to poor performance. Different ways to implement the Random Forest
classifier with self-training will be explored in future work. It should be noted that this is not an issue
for the Bernoulli Naive Bayes, where the counts are simply updated based on the new training data.

Thus, the answer to our research question RQ?2 is that the feature-instance approach generally
improves the results of the self-training approach (by comparing ST-Original versus feature-instance
adaptation). Similarly, the feature-instance adaptation can improve the results of self-training (by
comparing ST-Original with feature-instance-parameter adaptation), especially for larger datasets.
However, the two adaptation approaches, self-training and feature-instance adaptation, are very
competitive by themselves and give better results than the supervised baselines in most cases.
Regarding research question, RQ3, as discussed above both Bernoulli Naive Bayes and Random
Forest classifiers benefit from feature-instance adaptation. The Bernoulli Naive Bayes classifier also
benefits from self-training adaptation consistently. However, with the current implementation, the
Random Forest classifier benefits from self-training only in the case of larger datasets.

Finally, to answer RQ4, it should be noted that differences between CrisisLexT6 and 2CTweets
datasets lead to different behavior of the self-training algorithm when used on one dataset versus the
other. Specifically, as mentioned before, the events in CrisisLexT6 have significantly larger sizes
when compared to the events in the 2Ctweets dataset. This ensures that accurately labeled training
instances are identified at each iteration, and thus a larger number of iterations are possible. As a
consequence, the performance generally increases with the number of iterations. Furthermore, the
pairs of events in CrisisLexT6 have better contextual overlap, as compared to the pairs of events in
2CTweets, a fact that also contributes to accurate labels for some target instances at each iteration. As
opposed to that, the events in the 2CTweets dataset are smaller in size, and the pairs of events show
less overlap. Therefore, there is a higher chance that incorrectly labeled target instances are added
to the training set decreasing the performance with more data. This behavior can be seen clearly in
Figure 4, where the 2C pair classification shows an unusual instability in accuracy, as more target
instances are introduced at each iteration. The CrisisLexT6 pair, on the other hand, has a more stable
accuracy which increases with the number of iterations. Given this behavior, the number of iterations
for 2CTweets was roughly tuned for a source-target pair (as opposed to tuning for each split) in the
preliminary examination. More fine-tuning may lead to better results.
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Figure 4. Variation of accuracy with the self-training iterations for a representative pair of events from CrisisLexT6 (Top), and a
representative pair of events from 2CTweets (Bottom). Self-Training Bernoulli Naive Bayes is used to train the classifiers in the
graphs on the left, while Random Forest is used to train the classifiers in the graphs on the right. For the pair from CrisisLexT6,
five target instances per class are added at each iteration, while for the 2CTweets pair, two target instances per class are added.
This figure depicts the self-training instability for the 2CTweets pair as compared to the CrisisLexT6 pair.
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When comparing the feature-instance adaptation method to the baselines using Bernoulli Naive
Bayes in both datasets, the adapted results tend to significantly improve the baseline results in 83% and
89% of the cases for CrisisLexT6 and 2CTweets, respectively. Similarly, when parameter adaptation is
used, the results are significant in 71% and 89% of the cases, respectively, demonstrating that parameter
adaptation was more effective in 2CTweets due to the dataset’s smaller size. The feature-instance
adaptation was also able to significantly outperform individual instance adaptation in 61% and 42%
of the cases, as well as individual feature adaptation in 60% and 40% of the cases, for CrisisLexT6
and 2CTweets, respectively. However, when using Random Forest, parameter adaptation is able to
increase the significant results from 43% to 60% in CrisisLexT6, when compared to no feature-instance
adaptation, while in 2CTweets the significant results decrease from 45% to 36%. As discussed above,
this is most likely due to the lack of instances that are used to create new trees at each iteration of
the parameter adaptation. Both adaptation sets are able to outperform individual feature and instance
adaptation in both datasets by about 60% with the exception of feature-instance-parameter adaptation
compared to individual instance adaptation in 2CTweets.

RELATED WORK

Machine learning algorithms have been used to help responders sift through the huge amounts of crisis
data and prioritize information that may be useful for response and relief. Some studies have used
images to identify such data (Alam, Imran, and Ofli, 2017; Li et al., 2019) whereas others have relied
on the more abundant text data (Verma et al., 2011; Caragea et al., 2011; Vieweg, 2012; Terpstra et al.,
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2012; Purohit et al., 2013; Imran et al., 2013; Caragea et al., 2014; Ashktorab et al., 2014; Imran and
Castillo 2015; Sen, Rudra, and Ghosh, 2015; Huang and Xiao, 2015; Imran, Chawla, Castillo, 2016;
Derczynski et al., 2018; Zahera, Jalota, and Usbeck, 2018), or in some cases a combination of both
image and text data (Jomaa, Rizk, and Awad, 2016; Zhang et al., 2019; Mouzannar, Rizk, and Awad
2018). For example, Imran et al. (2013) used conditional random fields and Karami et al. (2019) used
sentiment analysis and topic modeling to find tweets within specific situational awareness categories.
Sen, Rudra, and Ghosh (2015) used Support Vector Machine (SVM) classifiers to differentiate between
situational and non-situational tweets. Huang and Xiao (2015) introduced a detailed list of situational
awareness categories, divided based on three stages of a disaster (preparedness, emergency response,
and recovery), and used k-Nearest Neighbors, Logistic Regression and Naive Bayes classifiers to
automatically classify tweets with respect to their defined categories. And others such as Zade et al.
(2018) use different mediums such as surveys and interviews to aid in the effort.

While research on supervised machine learning in the area of emergency response has shown that
it is possible to automatically classify disaster-related data, it has also emphasized one of the most
important challenges that precludes the use of supervised machine learning in real time in an emerging
crisis situation: the lack of labeled data to train reliable supervised models as the crisis unfolds. To
address this challenge, several works proposed to use labeled data from prior “source” crises to learn
supervised classifiers for a “target” crisis (Verma et al., 2011; Imran, Mitra, and Srivastava, 2016;
Caragea, Silvescu, and Tapia, 2016; Nguyen et al., 2017). One drawback of this approach is that
supervised classifiers learned in one crisis event, does not generalize well to other events (Qadir et
al., 2016; Imran et al., 2015), as each event has unique characteristics (Palen and Anderson, 2016).
These problems are widely known as domain adaptation or transfer learning (Kouw, 2018). Domain
adaptation approaches (Pan and Yang 2010; Jiang 2008) that make use of unlabeled data from the target
disaster in addition to label data from a source disaster are desirable. Some recent works (Li et al.,
2015; Li, Caragea, and Caragea, 2017; Li et al., 2017) have shown that the use of domain adaptation
approaches can significantly improve the results of the supervised classifiers learned from source
only. According to Pan and Yang (2010), domain adaptation is achieved by performing parameter
adaptation, feature adaptation or instance adaptation. A comprehensive description of works in each
category can be found in (Pan and Yang, 2010).

In the space of disasters, the domain adaptation approaches proposed by Li et al. (2015, 2017)
can be seen as parameter-based adaptation approaches. Mazloom et al. (2018) proposed a hybrid
feature-instance adaptation approach and tested it on the CrisisLexT6 dataset using the Bernoulli
Naive Bayes. Mazloom et al. (2018) demonstrated the complementary strengths of feature and instance
adaptation approaches, which can significantly improve classification when combined and used with
supervised approaches such as Bernoulli Naive Bayes.

To the best of our knowledge, there are no feature-instance-parameter adaptation approaches that
have been used for classifying disaster related data. As a consequence, we first extend the work by
Mazloom et al. (2018) by studying another dataset (2CTweets) and another base classifier (Random
Forest), and subsequently we introduce a hybrid feature-instance-parameter approach and study it
using both CrisisLexT6 and 2CTweets as datasets, with both Bernoulli Naive Bayes and Random
Forests as base classifiers.

CONCLUSION AND FUTURE WORK

Social media data taken from sources such as Twitter contain invaluable data which can be used in
times of crisis and emergency situations to improve response and awareness. Despite many supervised
learning approaches being proposed, not many agencies and groups use these approaches to identify
useful information, due to lack of labeled data for training the supervised models. In this study, we
proposed a simple but powerful feature-instance-parameter adaptation approach to first reduce the
variation between source and target disasters, and subsequently use self-training on the modified
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source together with target unlabeled data to address the scarcity of the labeled data in the target
domain. Experimental results on pairs of events from two disaster datasets, CrisisLexT6 and 2CTweets,
using Bernoulli Naive Bayes and Random Forest classifiers, show that the proposed approach can
help improve the results of self-training used by itself, and also the results of the feature-instance
adaptation approach used by itself. However, the two adaptation approaches, self-training and feature-
instance adaptation, are also powerful by themselves and give very competitive results in some cases,
and better results than the supervised baselines in most cases. Between Bernoulli Naive Bayes and
Random Forest, the Bernoulli Naive Bayes classifiers work better with the self-training approach,
although both benefit from the feature-instance adaptation approach. In terms of datasets, the results
show that a larger number of sources labeled and target unlabeled instances are beneficial, especially
when self-training is used. Furthermore, the incremental updates that were used to implement self-
training work well in the case of Bernoulli Naive Bayes but not so well in the case of Random Forest.

In future work, more experiments can be done using different classifiers, including deep learning
classifiers, on the selected source data. Furthermore, different matrix factorization and clustering
approaches (potentially, with different distance metrics) can be explored. Finally, different domain
adaptation classifiers, including different implementations of self-training, can be used.
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