

ResEval Mash: A Mashup Tool that
Speaks the Language of the User

Abstract

End-user development (i.e., enabling end-users without

programming skills to build their own applications) is

undergoing a revolution, as mashups are widely

considered to be the most appealing development tool

for the situational, short-span applications. Plain

technology (e.g., SOAP/WSDL web services) or simple

modeling languages (e.g., Yahoo! Pipes) don't convey

enough meaning to non-programmers. In this paper,

we propose a domain-specific approach to mashups

that speaks the language of the user", i.e., that is

aware of the terminology, concepts, rules, and

conventions (the domain) the user is comfortable with.

We exemplify the approach by implementing a mashup

tool for a specific domain (research evaluation) and

describe the respective user study. The results of a first

user study confirm that domain-specific mashup tools

indeed lower the entry barrier to mashup development.

Keywords

Mashups, End-User development, Research Evaluation

Domain-Specific mashups

ACM Classification Keywords

H.5.m [Information Interfaces and Presentation]:

Miscellaneous; Copyright is held by the author/owner(s).

CHI’12, May 5-10, 2012, Austin, Texas, USA.

ACM 978-1-4503-1016-1/12/05.

Muhammad Imran

Department of Information

Engineering and Computer

Science. University of Trento,

Via Sommarive 5, 38123,

Trento, Italy

imran@disi.unitn.it

Florian Daniel

Department of Information

Engineering and Computer

Science. University of Trento,

Via Sommarive 5, 38123,

Trento, Italy

daniel@disi.unitn.it

Fabio Casati

Department of Information

Engineering and Computer

Science. University of Trento,

Via Sommarive 5, 38123,

Trento, Italy

casati@disi.unitn.it

Maurizio Marchese

Department of Information

Engineering and Computer

Science. University of Trento,

Via Sommarive 5, 38123,

Trento, Italy

marchese@disi.unitn.it

General Terms

Design, Experimentation

Introduction

Mashups are web applications that typically used to

combine data or functionality from other web sources

to provide a new service. Mashup tools, i.e., online

development and runtime environments for mashups,

typically aim to enable also non-programmers to

develop their own applications. Along with the

prevalence of mashups, it is also considered to be a

focal point of major technologies like web 2.0,

situational applications, and end-user development.

The mashup platforms developed so far either expose

too much functionality and too many technicalities so

that they are powerful and flexible but suitable only for

programmers, or only allow compositions that are so

simple to be of little use for most practical applications.

For example, mashup tools typically come with SOAP

services, RSS feeds, UI widgets, and the like. Non-

programmers simply do not know how to use these and

what to do with them.

Yet, being amenable to non-programmers is

increasingly important as the opportunity given by the

wider and wider range of available online applications

and the increased flexibility that is required in both

businesses and personal life management raise the

need for situational (one-use or short-lifespan)

applications that cannot be developed or maintained

with the traditional requirement elicitation and software

development processes.

Problem Statement and Approach

We believe that the heart of the problem is that it is

impractical to design tools that are generic enough to

cover a wide range of application domains, powerful

enough to enable the specification of non-trivial logic,

and simple enough to be actually accessible to non-

programmers. At some point, we need to give up

something. In our view, this something is generality,

since reducing expressive power would mean

supporting only the development of toy applications,

which is useless, while simplicity is our major aim.

Giving up generality in practice means narrowing the

focus of a design tool to a well-defined domain and

tailoring the tool's development paradigm, models,

language, and components to the specific needs of that

domain only.

In this paper, we therefore champion the notion of

domain-specific mashup tools and describe what they

are composed of, how they can be developed, how they

can be extended for the specificity of any particular

application context, and how they can be used by non-

programmers to develop complex mashup logics within

the boundaries of one domain.

The Domain

A domain is a delimited sphere of concepts and

processes; domain concepts consist of data and

relationships; domain processes operate on domain

concepts and are either atomic (activities) or composite

(processes integrating multiple activities). The domain

defines the “universe” in the context of which we can

define domain-specific mashups. It defines the

information that is processed by the mashup, both

conceptually and in terms of concrete data types (e.g.,

XML schemas). It defines the classes of components

that can be part of the process and how they can be

combined, as well as a notation that carries meaning in

the domain (such as specific graphical symbols for

components of different classes).

In this paper, we present ResEval Mash, a mashup

platform for research evaluation, i.e., for the

assessment of the productivity or quality of

researchers, teams, institutions, journals, and the like

(a topic most of us are acquainted with). The platform

is specifically tailored to the need of sourcing data

about scientific publications and researchers from the

Web, aggregating them, computing metrics (also

complex and ad-hoc ones), and visualizing them.

Principles and Requirements

Turning the previous consideration into practice, the

development of ResEval Mash (i.e., a domain-specific

tool) will be driven by the following key principles:

1. Intuitive graphical user interface. Enabling

end-users (i.e., domain experts) to develop own

research evaluation metrics, i.e., mashups,

requires an intuitive and easy-to-use user interface

(UI) based on the concepts and terminology the

target domain expert is acquainted with. Research

evaluation, for instance, speaks about metrics,

researchers, publications, etc.

2. Intuitive modeling constructs. Next to the look

and feel of the platform, it is important that the

functionalities provided through the platform (i.e.,

the building blocks in the composition design

environment) resemble the common practice of the

domain. For instance, we need to be able to

compute metrics, to group people and publications,

and so on.

3. No data mappings. Our experience with prior

mashup platforms has shown that data mappings

are one of the least intuitive tasks in composition

environments and that non-programmers are

typically not able to correctly specify them. We

therefore aim to develop a mashup platform that is

able to work without data mappings.

4. Runtime transparency. In order to convey to the

user what is going on during the execution of a

mashup especially when it takes several seconds,

we provide transparency into the state of a running

mashup. We identify two key points where

transparency is important in the mashup model:

components and processing state. At each instant

of time during the execution, the runtime

environment should allow the user to inspect the

data processed and produced by each component.

In addition, to convey the processing state of each

component and thus the mashup model the

environment should graphically show the state.

The ResEval Mash Tool

Some of the above requirements require ResEval Mash

to specifically take into account the characteristics of

the research evaluation domain. Doing so produces a

platform that is fundamentally different from generic

mashup platforms, such as Yahoo! Pipes1. We achieve

domain-specificity as follows:

To provide users with a mashup environment that has

an intuitive graphical UI we design first a domain

syntax, which provides each object in the composition

environment with a visual metaphor that the domain

expert is acquainted with and that visually convey the

1 http://pipes.yahoo.com/pipes/

respective functionalities. For instance, ResEval Mash

uses a gauge for metrics and the icons that resemble

the chart types of graphical output components.

Figure 1: Connecting components in ResEval Mash

The core of the platform are the functionalities exposed

to the domain expert in the form of modeling

constructs. These must address the specific domain

needs and cover as many as possible mashup scenarios

inside the chosen domain. To design these constructs, a

thorough analysis of the domain is needed, so as to

produce a domain process model, which specifies the

classes of domain activities and, possibly, ready

processes that are needed (e.g., data sources and

metrics). Next, a set of instances of domain activities

(e.g., an h-index algorithm) must be implemented,

which can be turned into concrete mashup components.

In order to relieve users from the definition of complex

data mappings, ResEval Mash is based on an explicit

domain concept model, which expresses all domain

concepts and their relationships. As shown in Figure 1,

if all instances of domain activities understand this

domain concept model and produce and consume data

according to it, we can omit data mappings from the

composition environment in that the respective

components simply know how to interpret inputs.

The research evaluation domain comes with a

requirement of dealing with large amounts of data. For

instance, in order to compute the h-index of all the

researchers in a country or even in a university for a

specific field requires to fetch a large dataset from a

given source and to process it. For this purpose,

ResEval Mash is based on an architecture which

sensibly distributes big computational steps over client

and server sides as shown in Figure 2.

Figure 2: Architecture for handling large amount of data

A good practice is to implement a server side

component (i.e., a component binded with a web

service) which requires to process big data. All the

compositions run at the client side. Only the sever side

components calls their corresponding services in order

to perform their respective functionality. A service

takes data either from a database or shared memory

depending on data availability in shared memory. After

processing, the data is again stored back to the shared

memory. Only a control signal is passed to the

respective component in order to convey the state of

processing, which is then passed to next components.

In Figure 3 we show ResEval Mash composition editor

and its various parts along with their description.

Related work

The requirement for more intuitive development

environments and design support for end-users clearly

emerges from research on end-users (EUD), for

example for web services [1, 2], little is available to

satisfy this need. There are currently two main

approaches to enable less skilled users to develop

programs: in general, development can be eased either

by simplifying it (e.g., limiting the expressive power of

a programming language) or by reusing knowledge

(e.g., copying and pasting from existing algorithms).

Figure 3: ResEval Mash in action: screen shots of the modeling canvas and its various parts

Web mashups [3] emerged as an approach to provide

easier ways to connect together services and data

sources available on the Web [4], together with the

claim to target non-programmers. In general mashups

aim to bring together the benefits of both simplification

and reuse. In the case of domain-specific mashup

environments, we aim to push simplification even

further compared to generic mashup platforms by

limiting the environment to the needs of a single, well-

defined domain only. Reuse is supported in the form of

reusable domain activities, which can be mashed up.

The idea of focusing on a particular domain and

exploiting its specificities to create more effective and

simpler development environments is supported by a

large number of research works [5, 6, 7]. Mainly these

areas are related to Domain Specific Modeling (DSM)

and Domain Specific Language (DSL). In DSM, domain

concepts, rules, and semantics are represented by one

or more models, which are then translated into

executable code. Managing these models can be a

complex task that is typically suited only to

programmers.

Evaluation and Lesson Learned

We have performed a preliminary user study of ResEval

Mash in the form of contextual interviews with 10

domain experts (5 with and 5 without IT skills). We

mainly checked two aspects, i.e., the user preference

between generic (in our case Yahoo! Pipes) versus a

domain-specific tool (ResEval Mash) and the

intuitiveness of a domain-specific tool. The results

clearly show that users feel more comfortable with a

domain-specific mashup approach as compared to a

generic one. Users positively rated the balance between

the flexibility, usability, and complexity of ResEval

Mash.

In ResEval Mash, we constrain the mashup language to

a single domain and the mashup components to the

domain's concept model. While this might be an

additional burden on the component developer, it

allows us to shield the user from one of the most

complex aspects of mashups, i.e., data mappings.

Users only need to think about the data flow, the

components know themselves which data to use. This is

a very simple, but powerful simplification.

Refrences
[1] Namoun, A., Nestler, T., and De Angeli, A.

Conceptual and Usability Issues in the Composable Web
of Software Services. ICWE 2010. Springer, 396-407.

[2] Namoun, A., Nestler, T., and De Angeli, A. Service

Composition for Non-Programmers: Prospects,
Problems, and Design Recommendations. ECOWS
2010, IEEE, 123-130.

[3] Yu, J., Benatallah, B., Casati, F., and Daniel, F.
Understanding Mashup Development. IEEE Internet

Computing 12, 44-52.

[4] Hartmann, B. and Doorley, S. and Klemmer, S.R.
Hacking, Mashing, Gluing: A Study of Opportunistic
Design and Development. Pervasive Computing, 46-54.

[5] Costabile, M. F., Fogli, D., Fresta, G., Mussio, P.,
and Piccinno, A. Software Environments for End-User
Development and Tailoring. PsychNology Journal 2, 1,
99-122.

[6] Mernik, M. and Heering, J. and Sloane, A. M. When
and how to develop domain-specific languages. ACM
Comput. Surv. 37, 4, 316-344.

[7] France, R. and Rumpe, B. Domain specific
modeling. Software and Systems Modeling 4, 1-3.

